» Articles » PMID: 33720740

Modular Synthetic Approach to Silicon-Rhodamine Homologues and Analogues Via Bis-aryllanthanum Reagents

Overview
Journal Org Lett
Specialties Biochemistry
Chemistry
Date 2021 Mar 15
PMID 33720740
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

A modular synthetic approach toward diverse analogues of the far-red fluorophore silicon-rhodamine (SiR), based on a regioselective double nucleophilic addition of aryllanthanum reagents to esters, anhydrides, and lactones, is proposed. The reaction has improved functional group tolerance and represents a unified strategy toward cell-permeant, spontaneously blinking, and photoactivatable SiR fluorescent labels. In tandem with Pd-catalyzed hydroxy- or aminocarbonylation, it serves a streamlined synthetic pathway to a series of validated live-cell-compatible fluorescent dyes.

Citing Articles

Optimized Red-Absorbing Dyes for Imaging and Sensing.

Grimm J, Tkachuk A, Patel R, Hennigan S, Gutu A, Dong P J Am Chem Soc. 2023; 145(42):23000-23013.

PMID: 37842926 PMC: 10603817. DOI: 10.1021/jacs.3c05273.


Rejuvenating old fluorophores with new chemistry.

Schnermann M, Lavis L Curr Opin Chem Biol. 2023; 75:102335.

PMID: 37269674 PMC: 10524207. DOI: 10.1016/j.cbpa.2023.102335.


A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy.

Bucevicius J, Gerasimaite R, Kiszka K, Pradhan S, Kostiuk G, Koenen T Nat Commun. 2023; 14(1):1306.

PMID: 36894547 PMC: 9998615. DOI: 10.1038/s41467-023-36913-2.


A long-wavelength xanthene dye for photoacoustic imaging.

Zhou X, Fang Y, Wimalasiri V, Stains C, Miller E Chem Commun (Camb). 2022; 58(85):11941-11944.

PMID: 36196957 PMC: 9634815. DOI: 10.1039/d2cc03947h.


Radiolabeled Silicon-Rhodamines as Bimodal PET/SPECT-NIR Imaging Agents.

Kanagasundaram T, Laube M, Wodtke J, Kramer C, Stadlbauer S, Pietzsch J Pharmaceuticals (Basel). 2021; 14(11).

PMID: 34832938 PMC: 8623702. DOI: 10.3390/ph14111155.

References
1.
Bucevicius J, Kostiuk G, Gerasimaite R, Gilat T, Lukinavicius G . Enhancing the biocompatibility of rhodamine fluorescent probes by a neighbouring group effect. Chem Sci. 2021; 11(28):7313-7323. PMC: 7983176. DOI: 10.1039/d0sc02154g. View

2.
Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M, Saito N . Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging. J Am Chem Soc. 2012; 134(11):5029-31. DOI: 10.1021/ja210375e. View

3.
Kozma E, Estrada Girona G, Paci G, Lemke E, Kele P . Bioorthogonal double-fluorogenic siliconrhodamine probes for intracellular super-resolution microscopy. Chem Commun (Camb). 2017; 53(50):6696-6699. DOI: 10.1039/c7cc02212c. View

4.
Grzybowski M, Taki M, Senda K, Sato Y, Ariyoshi T, Okada Y . A Highly Photostable Near-Infrared Labeling Agent Based on a Phospha-rhodamine for Long-Term and Deep Imaging. Angew Chem Int Ed Engl. 2018; 57(32):10137-10141. DOI: 10.1002/anie.201804731. View

5.
Uno S, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan M . A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem. 2014; 6(8):681-9. DOI: 10.1038/nchem.2002. View