» Articles » PMID: 33681812

Simple Vanilla Derivatives for Long-Lived Room-Temperature Polymer Phosphorescence As Invisible Security Inks

Overview
Specialty Biology
Date 2021 Mar 8
PMID 33681812
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Developing novel long-lived room-temperature polymer phosphorescence (RTPP) materials could significantly expand their application scope. Herein, a series of RTPP materials based on eight simple vanilla derivatives for security ink application are reported. Attributed to strong mutual hydrogen bonding with polyvinyl alcohol (PVA) matrix, vanilla-doped PVA films exhibit ultralong phosphorescence emission under ambient conditions observed by naked eyes, where methyl vanillate shows the longest emission time up to 7 s. Impressively, when vanilla-doped PVA materials are utilized as invisible security inks, and the inks not only present excellent luminescent emission stability under ambient conditions but also maintain perfect reversibility between room temperature and 65°C for multiple cycles. Owing to the unique RTPP performance, an advanced anticounterfeiting data encoding/reading strategy based on handwriting technology and complex pattern steganography is developed.

Citing Articles

Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films.

Lee B, Jablonska A, Pham D, Sagoo R, Gryczynski Z, Pham T Int J Mol Sci. 2025; 26(2).

PMID: 39859229 PMC: 11764979. DOI: 10.3390/ijms26020514.


Abnormal thermally-stimulated dynamic organic phosphorescence.

Wang H, Ma H, Gan N, Qin K, Song Z, Lv A Nat Commun. 2024; 15(1):2134.

PMID: 38459008 PMC: 10923930. DOI: 10.1038/s41467-024-45811-0.


Cellulose-Based Ultralong Room-Temperature Phosphorescence Nanomaterials with Tunable Color and High Quantum Yield via Nano-Surface Confining Effect.

Zhang X, Yin C, You J, Li R, Zhang J, Cheng Y Research (Wash D C). 2023; 6:0029.

PMID: 37040512 PMC: 10076006. DOI: 10.34133/research.0029.


Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters.

Guimbao J, Sanchis L, Weituschat L, Llorens J, Postigo P Nanomaterials (Basel). 2022; 12(16).

PMID: 36014665 PMC: 9414413. DOI: 10.3390/nano12162800.

References
1.
Tao Y, Chen R, Li H, Yuan J, Wan Y, Jiang H . Resonance-Activated Spin-Flipping for Efficient Organic Ultralong Room-Temperature Phosphorescence. Adv Mater. 2018; 30(44):e1803856. DOI: 10.1002/adma.201803856. View

2.
Yu Y, Kwon M, Jung J, Zeng Y, Kim M, Chung K . Room-Temperature-Phosphorescence-Based Dissolved Oxygen Detection by Core-Shell Polymer Nanoparticles Containing Metal-Free Organic Phosphors. Angew Chem Int Ed Engl. 2017; 56(51):16207-16211. DOI: 10.1002/anie.201708606. View

3.
Etherington M, Gibson J, Higginbotham H, Penfold T, Monkman A . Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence. Nat Commun. 2016; 7:13680. PMC: 5141373. DOI: 10.1038/ncomms13680. View

4.
Su Y, Zhang Y, Wang Z, Gao W, Jia P, Zhang D . Excitation-Dependent Long-Life Luminescent Polymeric Systems under Ambient Conditions. Angew Chem Int Ed Engl. 2019; 59(25):9967-9971. DOI: 10.1002/anie.201912102. View

5.
Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X . Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol. 2017; 35(11):1102-1110. DOI: 10.1038/nbt.3987. View