» Articles » PMID: 37040512

Cellulose-Based Ultralong Room-Temperature Phosphorescence Nanomaterials with Tunable Color and High Quantum Yield Via Nano-Surface Confining Effect

Overview
Specialty Biology
Date 2023 Apr 11
PMID 37040512
Authors
Affiliations
Soon will be listed here.
Abstract

How to achieve multicolor organic room-temperature phosphorescence (RTP) is still challenging and striking. Herein, we discovered a new principle to construct eco-friendly color-tunable RTP nanomaterials based on the nano-surface confining effect. Cellulose nanocrystal (CNC) immobilized cellulose derivatives (CX) containing aromatic substituents via hydrogen-bonding interactions, which effectively inhibit the motion of cellulose chains and luminescent groups to suppress the nonradiative transitions. Meanwhile, CNC with a strong hydrogen-bonding network can isolate oxygen. CX with different aromatic substituents regulate the phosphorescent emission. After mixing CNC and CX directly, a series of polychromatic ultralong RTP nanomaterials were obtained. The RTP emission of the resultant CX@CNC can be finely adjusted through the introduction of various CX and the regulation of the CX/CNC ratio. Such a universal, facile, and effective strategy can be used to fabricate various colorful RTP materials with wide color gamut. Because of the complete biodegradability of cellulose, the multicolor phosphorescent CX@CNC nanomaterials can be used as eco-friendly security inks to fabricate disposable anticounterfeiting labels and information-storage patterns via conventional printing and writing processes.

Citing Articles

Investigation of Releasing Chamomile Essential Oil from Inserts with Cellulose Agar and Microcrystalline Cellulose Agar Films Used in Biotextronics Systems for Lower Urinary Tract Inflammation Treatment.

Frydrysiak E, Smigielski K, Kunicka-Styczynska A, Frydrysiak M Materials (Basel). 2024; 17(16).

PMID: 39203297 PMC: 11356156. DOI: 10.3390/ma17164119.


Room Temperature Phosphorescent Nanofiber Membranes by Bio-Fermentation.

Nie X, Gong J, Ding Z, Wu B, Wang W, Gao F Adv Sci (Weinh). 2024; 11(33):e2405327.

PMID: 38952072 PMC: 11434032. DOI: 10.1002/advs.202405327.


A General Synthesis Method for Patterning PEDOT toward Wearable Electronics and Bioelectronics.

Cheng W, Zheng Z, Li X, Zhu Y, Zeng S, Zhao D Research (Wash D C). 2024; 7:0383.

PMID: 38779489 PMC: 11109514. DOI: 10.34133/research.0383.


Room-temperature phosphorescent materials derived from natural resources.

Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J Nat Rev Chem. 2023; 7(11):800-812.

PMID: 37749285 DOI: 10.1038/s41570-023-00536-4.

References
1.
Trache D, Hussin M, Haafiz M, Thakur V . Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 2017; 9(5):1763-1786. DOI: 10.1039/c6nr09494e. View

2.
Jiang J, Lu S, Liu M, Li C, Zhang Y, Yu T . Tunable Photoluminescence Properties of Microcrystalline Cellulose with Gradually Changing Crystallinity and Crystal Form. Macromol Rapid Commun. 2021; 42(17):e2100321. DOI: 10.1002/marc.202100321. View

3.
Zhao D, Pang B, Zhu Y, Cheng W, Cao K, Ye D . A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration. Adv Mater. 2021; 34(10):e2107857. DOI: 10.1002/adma.202107857. View

4.
Dou X, Zhu T, Wang Z, Sun W, Lai Y, Sui K . Color-Tunable, Excitation-Dependent, and Time-Dependent Afterglows from Pure Organic Amorphous Polymers. Adv Mater. 2020; 32(47):e2004768. DOI: 10.1002/adma.202004768. View

5.
Ma H, Peng Q, An Z, Huang W, Shuai Z . Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. J Am Chem Soc. 2018; 141(2):1010-1015. DOI: 10.1021/jacs.8b11224. View