Endothelial Iron Homeostasis Regulates Blood-Brain Barrier Integrity Via the HIF2α-Ve-Cadherin Pathway
Overview
Authors
Affiliations
The objective of this study was to investigate the molecular response to damage at the blood brain barrier (BBB) and to elucidate critical pathways that might lead to effective treatment in central nervous system (CNS) pathologies in which the BBB is compromised. We have used a human, stem-cell derived in-vitro BBB injury model to gain a better understanding of the mechanisms controlling BBB integrity. Chemical injury induced by exposure to an organophosphate resulted in rapid lipid peroxidation, initiating a ferroptosis-like process. Additionally, mitochondrial ROS formation (MRF) and increase in mitochondrial membrane permeability were induced, leading to apoptotic cell death. Yet, these processes did not directly result in damage to barrier functionality, since blocking them did not reverse the increased permeability. We found that the iron chelator, Desferal© significantly decreased MRF and apoptosis subsequent to barrier insult, while also rescuing barrier integrity by inhibiting the labile iron pool increase, inducing HIF2α expression and preventing the degradation of Ve-cadherin specifically on the endothelial cell surface. Moreover, the novel nitroxide JP4-039 significantly rescued both injury-induced endothelium cell toxicity and barrier functionality. Elucidating a regulatory pathway that maintains BBB integrity illuminates a potential therapeutic approach to protect the BBB degradation that is evident in many neurological diseases.
p23 protects against ferroptosis of brain microvascular endothelial cells in ischemic stroke.
Zhao Y, Xu Y, Xu Q, He N, Zhao J, Liu Y Int J Mol Med. 2025; 55(4).
PMID: 39981897 PMC: 11878478. DOI: 10.3892/ijmm.2025.5505.
Iron-handling solute carrier SLC22A17 as a blood-brain barrier target after stroke.
Ren X, Li W Neural Regen Res. 2024; 20(11):3207-3208.
PMID: 39715085 PMC: 11881719. DOI: 10.4103/NRR.NRR-D-24-00811.
Martorelli M, Dengler M, Laux J, Fischer T, Vaiceliunaite A, Hahn U ACS Pharmacol Transl Sci. 2024; 7(12):3827-3845.
PMID: 39698286 PMC: 11650733. DOI: 10.1021/acsptsci.4c00189.
Research Progress on the Mechanism of Histone Deacetylases in Ferroptosis of Glioma.
Ma M, Fei X, Jiang D, Chen H, Xie X, Wang Z Oncol Rev. 2024; 18:1432131.
PMID: 39193375 PMC: 11348391. DOI: 10.3389/or.2024.1432131.
Villa M, Wu J, Hansen S, Pahnke J Cells. 2024; 13(9.
PMID: 38727275 PMC: 11083179. DOI: 10.3390/cells13090740.