» Articles » PMID: 33649548

Experimental Identification and in Silico Prediction of Bacterivory in Green Algae

Overview
Journal ISME J
Date 2021 Mar 2
PMID 33649548
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

While algal phago-mixotrophs play a major role in aquatic microbial food webs, their diversity remains poorly understood. Recent studies have indicated several species of prasinophytes, early diverging green algae, to be able to consume bacteria for nutrition. To further explore the occurrence of phago-mixotrophy in green algae, we conducted feeding experiments with live fluorescently labeled bacteria stained with CellTracker Green CMFDA, heat-killed bacteria stained with 5-(4,6-dichlorotriazin-2-yl) aminofluorescein (DTAF), and magnetic beads. Feeding was detected via microscopy and/or flow cytometry in five strains of prasinophytes when provided with live bacteria: Pterosperma cristatum NIES626, Pyramimonas parkeae CCMP726, Pyramimonas parkeae NIES254, Nephroselmis pyriformis RCC618, and Dolichomastix tenuilepis CCMP3274. No feeding was detected when heat-killed bacteria or magnetic beads were provided, suggesting a strong preference for live prey in the strains tested. In parallel to experimental assays, green algal bacterivory was investigated using a gene-based prediction model. The predictions agreed with the experimental results and suggested bacterivory potential in additional green algae. Our observations underline the likelihood of widespread occurrence of phago-mixotrophy among green algae, while additionally highlighting potential biases introduced when using prey proxy to evaluate bacterial ingestion by algal cells.

Citing Articles

Metatranscriptomes-based sequence similarity networks uncover genetic signatures within parasitic freshwater microbial eukaryotes.

Monjot A, Rousseau J, Bittner L, Lepere C Microbiome. 2025; 13(1):43.

PMID: 39915863 PMC: 11800578. DOI: 10.1186/s40168-024-02027-0.


Impact of light and nutrient availability on the phagotrophic activity of harmful bloom-forming dinoflagellates.

Mena C, Long M, Lorand O, Malestroit P, Rabiller E, Maguer J J Plankton Res. 2025; 47(1):fbae038.

PMID: 39882107 PMC: 11774208. DOI: 10.1093/plankt/fbae038.


Protists and protistology in the Anthropocene: challenges for a climate and ecological crisis.

Perrin A, Dorrell R BMC Biol. 2024; 22(1):279.

PMID: 39617895 PMC: 11610311. DOI: 10.1186/s12915-024-02077-8.


Transcriptomics reveal a unique phago-mixotrophic response to low nutrient concentrations in the prasinophyte .

Charvet S, Bock N, Kim E, Duhamel S ISME Commun. 2024; 4(1):ycae083.

PMID: 38957873 PMC: 11217555. DOI: 10.1093/ismeco/ycae083.


Prevalence and Preferred Niche of Small Eukaryotes with Mixotrophic Potentials in the Global Ocean.

Dong K, Wang Y, Zhang W, Li Q Microorganisms. 2024; 12(4).

PMID: 38674694 PMC: 11051772. DOI: 10.3390/microorganisms12040750.


References
1.
Jost C, Lawrence C, Campolongo F, van de Bund W, Hill S, DeAngelis D . The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor Popul Biol. 2004; 66(1):37-51. DOI: 10.1016/j.tpb.2004.02.001. View

2.
Ward B, Follows M . Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci U S A. 2016; 113(11):2958-63. PMC: 4801304. DOI: 10.1073/pnas.1517118113. View

3.
Unrein F, Gasol J, Not F, Forn I, Massana R . Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 2013; 8(1):164-76. PMC: 3869011. DOI: 10.1038/ismej.2013.132. View

4.
Anderson R, Charvet S, Hansen P . Mixotrophy in Chlorophytes and Haptophytes-Effect of Irradiance, Macronutrient, Micronutrient and Vitamin Limitation. Front Microbiol. 2018; 9:1704. PMC: 6080504. DOI: 10.3389/fmicb.2018.01704. View

5.
McKie-Krisberg Z, Sanders R . Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISME J. 2014; 8(10):1953-61. PMC: 4184008. DOI: 10.1038/ismej.2014.16. View