» Articles » PMID: 33602823

Activation of NF-κB and P300/CBP Potentiates Cancer Chemoimmunotherapy Through Induction of MHC-I Antigen Presentation

Abstract

Many cancers evade immune rejection by suppressing major histocompatibility class I (MHC-I) antigen processing and presentation (AgPP). Such cancers do not respond to immune checkpoint inhibitor therapies (ICIT) such as PD-1/PD-L1 [PD-(L)1] blockade. Certain chemotherapeutic drugs augment tumor control by PD-(L)1 inhibitors through potentiation of T-cell priming but whether and how chemotherapy enhances MHC-I-dependent cancer cell recognition by cytotoxic T cells (CTLs) is not entirely clear. We now show that the lysine acetyl transferases p300/CREB binding protein (CBP) control MHC-I AgPPM expression and neoantigen amounts in human cancers. Moreover, we found that two distinct DNA damaging drugs, the platinoid oxaliplatin and the topoisomerase inhibitor mitoxantrone, strongly up-regulate MHC-I AgPP in a manner dependent on activation of nuclear factor kappa B (NF-κB), p300/CBP, and other transcription factors, but independently of autocrine IFNγ signaling. Accordingly, NF-κB and p300 ablations prevent chemotherapy-induced MHC-I AgPP and abrogate rejection of low MHC-I-expressing tumors by reinvigorated CD8 CTLs. Drugs like oxaliplatin and mitoxantrone may be used to overcome resistance to PD-(L)1 inhibitors in tumors that had "epigenetically down-regulated," but had not permanently lost MHC-I AgPP activity.

Citing Articles

Cancer vaccines: current status and future directions.

Zhou Y, Wei Y, Tian X, Wei X J Hematol Oncol. 2025; 18(1):18.

PMID: 39962549 PMC: 11834487. DOI: 10.1186/s13045-025-01670-w.


TNFAIP2 promotes NF-κB signaling mediate lymph node metastasis of oral squamous cell carcinoma by protecting IKKβ from ubiquitin proteasome degradation.

Xu T, Wang Y, Zhao Z, Wang J, Zhao Z, Yang Y Cell Commun Signal. 2025; 23(1):83.

PMID: 39948570 PMC: 11827437. DOI: 10.1186/s12964-025-02077-3.


A systematic review of advances in preparation, structures, bioactivities, structural-property relationships, and applications of polysaccharides.

Gao W, Xu Y, Chen W, Wu J, He Y Food Chem X. 2025; 25:102161.

PMID: 39885918 PMC: 11780138. DOI: 10.1016/j.fochx.2025.102161.


Selective deficiency of mitochondrial respiratory complex I subunits Ndufs4/6 causes tumor immunogenicity.

Liang J, Vitale T, Zhang X, Jackson T, Yu D, Jedrychowski M Nat Cancer. 2025; 6(2):323-337.

PMID: 39824999 DOI: 10.1038/s43018-024-00895-x.


Blocking WNT7A Enhances MHC-I Antigen Presentation and Enhances the Effectiveness of Immune Checkpoint Blockade Therapy.

Sun J, Wang P, Yi Z, Wu Y, Wei Y, Fang H Cancer Immunol Res. 2024; 13(3):400-416.

PMID: 39602462 PMC: 11876963. DOI: 10.1158/2326-6066.CIR-24-0484.


References
1.
Mariathasan S, Turley S, Nickles D, Castiglioni A, Yuen K, Wang Y . TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018; 554(7693):544-548. PMC: 6028240. DOI: 10.1038/nature25501. View

2.
Santos G, Zielenska M, Prasad M, Squire J . Chromosome 6p amplification and cancer progression. J Clin Pathol. 2006; 60(1):1-7. PMC: 1860600. DOI: 10.1136/jcp.2005.034389. View

3.
Karachaliou N, Gonzalez-Cao M, Crespo G, Drozdowskyj A, Aldeguer E, Gimenez-Capitan A . Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol. 2018; 10:1758834017749748. PMC: 5784541. DOI: 10.1177/1758834017749748. View

4.
Wei S, Duffy C, Allison J . Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018; 8(9):1069-1086. DOI: 10.1158/2159-8290.CD-18-0367. View

5.
Eggermont A, Blank C, Mandala M, Long G, Atkinson V, Dalle S . Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N Engl J Med. 2018; 378(19):1789-1801. DOI: 10.1056/NEJMoa1802357. View