» Articles » PMID: 33602495

Animal Development in the Microbial World: Re-thinking the Conceptual Framework

Overview
Publisher Elsevier
Date 2021 Feb 19
PMID 33602495
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Animals have evolved within the framework of the microbes and are constantly exposed to diverse microbiota. This dominance of the microbial world is forcing all fields of biology to question some of their most basic premises, with developmental biology being no exception. While animals under laboratory conditions can develop and live without microbes, they are far from normal, and would not survive under natural conditions, where their fitness would be strongly compromised. Since much of the undescribed biodiversity on Earth is microbial, any consideration of animal development in the absence of the recognition of microbes will be incomplete. Here, we show that animal development may never have been autonomous, rather it requires transient or persistent interactions with the microbial world. We propose that to formulate a comprehensive understanding of embryogenesis and post-embryonic development, we must recognize that symbiotic microbes provide important developmental signals and contribute in significant ways to phenotype production. This offers limitless opportunities for the field of developmental biology to expand.

Citing Articles

Evolution of the ocular immune system.

Forrester J, McMenamin P Eye (Lond). 2024; 39(3):468-477.

PMID: 39653763 PMC: 11794555. DOI: 10.1038/s41433-024-03512-4.


The type VI secretion system induces intestinal macrophage redistribution and enhanced intestinal motility.

Ngo J, Amitabh P, Sokoloff J, Trinh C, Wiles T, Guillemin K mBio. 2024; 16(1):e0241924.

PMID: 39576112 PMC: 11708011. DOI: 10.1128/mbio.02419-24.


Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia.

Marulanda-Gomez A, Ribes M, Franzenburg S, Hentschel U, Pita L BMC Genomics. 2024; 25(1):674.

PMID: 38972970 PMC: 11229196. DOI: 10.1186/s12864-024-10548-z.


Intestinal dual-specificity phosphatase 6 regulates the cold-induced gut microbiota remodeling to promote white adipose browning.

Chen P, Tsai T, Liao Y, Liao Y, Cheng H, Weng Y NPJ Biofilms Microbiomes. 2024; 10(1):22.

PMID: 38480743 PMC: 10937957. DOI: 10.1038/s41522-024-00495-8.


Potential for host-symbiont communication via neurotransmitters and neuromodulators in an aneural animal, the marine sponge .

Xiang X, Vilar Gomez A, Blomberg S, Yuan H, Degnan B, Degnan S Front Neural Circuits. 2023; 17:1250694.

PMID: 37841893 PMC: 10570526. DOI: 10.3389/fncir.2023.1250694.


References
1.
Wong A, Dobson A, Douglas A . Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol. 2014; 217(Pt 11):1894-901. PMC: 4037322. DOI: 10.1242/jeb.101725. View

2.
Dorsky R, Moon R, Raible D . Control of neural crest cell fate by the Wnt signalling pathway. Nature. 1998; 396(6709):370-3. DOI: 10.1038/24620. View

3.
Skulason S, Parsons K, Svanback R, Rasanen K, Ferguson M, Adams C . A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc. 2019; 94(5):1786-1808. PMC: 6852119. DOI: 10.1111/brv.12534. View

4.
Palma G, Collins S, Bercik P, Verdu E . The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?. J Physiol. 2014; 592(14):2989-97. PMC: 4214655. DOI: 10.1113/jphysiol.2014.273995. View

5.
Stephens W, Burns A, Stagaman K, Wong S, Rawls J, Guillemin K . The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2015; 10(3):644-54. PMC: 4817687. DOI: 10.1038/ismej.2015.140. View