» Articles » PMID: 33585275

MicroRNA-30e-5p Regulates SOCS1 and SOCS3 During Bacterial Infection

Overview
Date 2021 Feb 15
PMID 33585275
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Host innate immunity is the major player against continuous microbial infection. Various pathogenic bacteria adopt the strategies to evade the immunity and show resistance toward the various established therapies. Despite the advent of many antibiotics for bacterial infections, there is a substantial need for the host-directed therapies (HDTs) to combat the infection. HDTs are recently being adopted to be useful in eradicating intracellular bacterial infection. Changing the innate immune responses of the host cells alters pathogen's ability to reside inside the cell. MicroRNAs are the small non-coding endogenous molecules and post-transcriptional regulators to target the 3'UTR of the messenger RNA. They are reported to modulate the host's immune responses during bacterial infections. Exploiting microRNAs as a therapeutic candidate in HDTs upon bacterial infection is still in its infancy. Here, initially, we re-analyzed the publicly available transcriptomic dataset of macrophages, infected withdifferent pathogenic bacteria and identified significant genes and microRNAs common to the differential infections. We thus identified and miR-30e-5p, to be upregulated in different bacterial infections which enhances innate immunity to combat bacterial replication by targeting key negative regulators such as and of innate immune signaling pathways. Therefore, we propose miR-30e-5p as one of the potential candidates to be considered for additional clinical validation toward HDTs.

Citing Articles

Role of Recognition MicroRNAs in and Interactions.

Luo J, Tan Y, Zhao S, Ren Q, Guan G, Luo J Pathogens. 2024; 13(4).

PMID: 38668243 PMC: 11054001. DOI: 10.3390/pathogens13040288.


Role of microRNAs in Immune Regulation with Translational and Clinical Applications.

Gaal Z Int J Mol Sci. 2024; 25(3).

PMID: 38339220 PMC: 10856342. DOI: 10.3390/ijms25031942.


AutophagyNet: high-resolution data source for the analysis of autophagy and its regulation.

Csabai L, Bohar B, Turei D, Prabhu S, Foldvari-Nagy L, Madgwick M Autophagy. 2023; 20(1):188-201.

PMID: 37589496 PMC: 10761021. DOI: 10.1080/15548627.2023.2247737.


Network Visualization Analysis on MicroRNAs in Infectious Diseases Research Area.

Alkan S, Serhat Sahinoglu M, Cinpolat H Oman Med J. 2023; 38(3):e502.

PMID: 37464988 PMC: 10351212. DOI: 10.5001/omj.2023.71.


Interplay of host and viral factors in inflammatory pathway mediated cytokine storm during RNA virus infection.

Chaudhary R, Meher A, Krishnamoorthy P, Kumar H Curr Res Immunol. 2023; 4:100062.

PMID: 37273890 PMC: 10238879. DOI: 10.1016/j.crimmu.2023.100062.


References
1.
Ling L, Zhang S, Zhi L, Li H, Wen Q, Li G . MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2. Biomed Pharmacother. 2018; 104:411-419. DOI: 10.1016/j.biopha.2018.05.042. View

2.
Zhou G, Soufan O, Ewald J, Hancock R, Basu N, Xia J . NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019; 47(W1):W234-W241. PMC: 6602507. DOI: 10.1093/nar/gkz240. View

3.
Reddick L, Alto N . Bacteria fighting back: how pathogens target and subvert the host innate immune system. Mol Cell. 2014; 54(2):321-8. PMC: 4023866. DOI: 10.1016/j.molcel.2014.03.010. View

4.
Verma S, Mohapatra G, Ahmad S, Rana S, Jain S, Khalsa J . Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol. 2015; 35(17):2932-46. PMC: 4525320. DOI: 10.1128/MCB.00397-15. View

5.
Ingle H, Kumar S, Raut A, Mishra A, Kulkarni D, Kameyama T . The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal. 2015; 8(406):ra126. DOI: 10.1126/scisignal.aab3183. View