» Articles » PMID: 33579698

Mitovesicles Are a Novel Population of Extracellular Vesicles of Mitochondrial Origin Altered in Down Syndrome

Abstract

Mitochondrial dysfunction is an established hallmark of aging and neurodegenerative disorders such as Down syndrome (DS) and Alzheimer's disease (AD). Using a high-resolution density gradient separation of extracellular vesicles (EVs) isolated from murine and human DS and diploid control brains, we identify and characterize a previously unknown population of double-membraned EVs containing multiple mitochondrial proteins distinct from previously described EV subtypes, including microvesicles and exosomes. We term these newly identified mitochondria-derived EVs "mitovesicles." We demonstrate that brain-derived mitovesicles contain a specific subset of mitochondrial constituents and that their levels and cargo are altered during pathophysiological processes where mitochondrial dysfunction occurs, including in DS. The development of a method for the selective isolation of mitovesicles paves the way for the characterization in vivo of biological processes connecting EV biology and mitochondria dynamics and for innovative therapeutic and diagnostic strategies.

Citing Articles

Mitochondrial Dysfunction Correlates with Brain Amyloid Binding, Memory, and Executive Function in Down Syndrome: Implications for Alzheimer's Disease in Down Syndrome.

Beresford-Webb J, McAllister C, Sleigh A, Walpert M, Holland A, Zaman S Brain Sci. 2025; 15(2).

PMID: 40002463 PMC: 11853603. DOI: 10.3390/brainsci15020130.


Recommendations for mitochondria transfer and transplantation nomenclature and characterization.

Brestoff J, Singh K, Aquilano K, Becker L, Berridge M, Boilard E Nat Metab. 2025; 7(1):53-67.

PMID: 39820558 DOI: 10.1038/s42255-024-01200-x.


Current trends in extracellular vesicle research on neuroscience from ADPD2021 meeting.

Ikezu T Extracell Vesicles Circ Nucl Acids. 2024; 2(1):49-54.

PMID: 39698505 PMC: 11651121. DOI: 10.20517/evcna.2021.08.


Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations.

Miceli R, Chen T, Nose Y, Tichkule S, Brown B, Fullard J J Extracell Vesicles. 2024; 13(12):e70005.

PMID: 39625409 PMC: 11613500. DOI: 10.1002/jev2.70005.


Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications.

Pan Y, Pan C, Zhang C J Ovarian Res. 2024; 17(1):237.

PMID: 39593094 PMC: 11590415. DOI: 10.1186/s13048-024-01551-9.


References
1.
Peng K, Perez-Gonzalez R, Alldred M, Goulbourne C, Morales-Corraliza J, Saito M . Apolipoprotein E4 genotype compromises brain exosome production. Brain. 2018; 142(1):163-175. PMC: 6308312. DOI: 10.1093/brain/awy289. View

2.
Alldred M, E Duff K, Ginsberg S . Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. Neurobiol Dis. 2011; 45(2):751-62. PMC: 3259262. DOI: 10.1016/j.nbd.2011.10.022. View

3.
Ginsberg S, Alldred M, Counts S, Cataldo A, Neve R, Jiang Y . Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression. Biol Psychiatry. 2010; 68(10):885-93. PMC: 2965820. DOI: 10.1016/j.biopsych.2010.05.030. View

4.
Perez-Gonzalez R, Gauthier S, Kumar A, Saito M, Saito M, Levy E . A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space. Methods Mol Biol. 2016; 1545:139-151. DOI: 10.1007/978-1-4939-6728-5_10. View

5.
Izzo A, Mollo N, Nitti M, Paladino S, Cali G, Genesio R . Mitochondrial dysfunction in down syndrome: molecular mechanisms and therapeutic targets. Mol Med. 2018; 24(1):2. PMC: 6016872. DOI: 10.1186/s10020-018-0004-y. View