» Articles » PMID: 33574602

Liquid Chromatin Hi-C Characterizes Compartment-dependent Chromatin Interaction Dynamics

Overview
Journal Nat Genet
Specialty Genetics
Date 2021 Feb 12
PMID 33574602
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Nuclear compartmentalization of active and inactive chromatin is thought to occur through microphase separation mediated by interactions between loci of similar type. The nature and dynamics of these interactions are not known. We developed liquid chromatin Hi-C to map the stability of associations between loci. Before fixation and Hi-C, chromosomes are fragmented, which removes strong polymeric constraint, enabling detection of intrinsic locus-locus interaction stabilities. Compartmentalization is stable when fragments are larger than 10-25 kb. Fragmentation of chromatin into pieces smaller than 6 kb leads to gradual loss of genome organization. Lamin-associated domains are most stable, whereas interactions for speckle- and polycomb-associated loci are more dynamic. Cohesin-mediated loops dissolve after fragmentation. Liquid chromatin Hi-C provides a genome-wide view of chromosome interaction dynamics.

Citing Articles

UV-induced reorganization of 3D genome mediates DNA damage response.

Kaya V, Adebali O Nat Commun. 2025; 16(1):1376.

PMID: 39910043 PMC: 11799157. DOI: 10.1038/s41467-024-55724-7.


HP1a promotes chromatin liquidity and drives spontaneous heterochromatin compartmentalization.

Brennan L, Kim H, Colmenares S, Ego T, Ryu J, Karpen G bioRxiv. 2025; .

PMID: 39868136 PMC: 11761810. DOI: 10.1101/2024.10.18.618981.


Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A.

Jin W, Jiang S, Liu X, He Y, Li T, Ma J Nat Commun. 2024; 15(1):10046.

PMID: 39567511 PMC: 11579472. DOI: 10.1038/s41467-024-54338-3.


KMT5C leverages disorder to optimize cooperation with HP1 for heterochromatin retention.

Knechtel J, Strickfaden H, Missiaen K, Hadfield J, Hendzel M, Underhill D EMBO Rep. 2024; 26(1):153-174.

PMID: 39562713 PMC: 11723951. DOI: 10.1038/s44319-024-00320-5.


The chromosome folding problem and how cells solve it.

Dekker J, Mirny L Cell. 2024; 187(23):6424-6450.

PMID: 39547207 PMC: 11569382. DOI: 10.1016/j.cell.2024.10.026.


References
1.
Lieberman-Aiden E, van Berkum N, Williams L, Imakaev M, Ragoczy T, Telling A . Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009; 326(5950):289-93. PMC: 2858594. DOI: 10.1126/science.1181369. View

2.
Rao S, Huntley M, Durand N, Stamenova E, Bochkov I, Robinson J . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7):1665-80. PMC: 5635824. DOI: 10.1016/j.cell.2014.11.021. View

3.
Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman E, Adam S . Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J Cell Biol. 2018; 217(11):4025-4048. PMC: 6219710. DOI: 10.1083/jcb.201807108. View

4.
Nir G, Farabella I, Perez Estrada C, Ebeling C, Beliveau B, Sasaki H . Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 2018; 14(12):e1007872. PMC: 6324821. DOI: 10.1371/journal.pgen.1007872. View

5.
Wang S, Su J, Beliveau B, Bintu B, Moffitt J, Wu C . Spatial organization of chromatin domains and compartments in single chromosomes. Science. 2016; 353(6299):598-602. PMC: 4991974. DOI: 10.1126/science.aaf8084. View