» Articles » PMID: 33555100

Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance

Overview
Specialty Chemistry
Date 2021 Feb 8
PMID 33555100
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The development of the basic understanding of the charge storage mechanisms in electrodes for energy storage applications needs deep characterization of the electrode/electrolyte interface. In this work, we studied the charge of the double layer capacitance at single layer graphene (SLG) electrode used as a model material, in neat (EMIm-TFSI) and solvated (with acetonitrile) ionic liquid electrodes. The combination of electrochemical impedance spectroscopy and gravimetric electrochemical quartz crystal microbalance (EQCM) measurements evidence that the presence of solvent drastically increases the charge carrier density at the SLG/ionic liquid interface. The capacitance is thus governed not only by the electronic properties of the graphene, but also by the specific organization of the electrolyte side at the SLG surface originating from the strong interactions existing between the EMIm cations and SLG surface. EQCM measurements also show that the carbon structure, with the presence of sp carbons, affects the charge storage mechanism by favoring counter-ion adsorption on SLG electrode versus ion exchange mechanism in amorphous porous carbons.

Citing Articles

Fundamentals and Implication of Point of Zero Charge (PZC) Determination for Activated Carbons in Aqueous Electrolytes.

Slesinska S, Galek P, Menzel J, Donne S, Fic K, Platek-Mielczarek A Adv Sci (Weinh). 2024; 11(48):e2409162.

PMID: 39535367 PMC: 11672325. DOI: 10.1002/advs.202409162.


Measuring the Capacitance of Carbon in Ionic Liquids: From Graphite to Graphene.

Yang J, Papaderakis A, Roh J, Keerthi A, Adams R, Bissett M J Phys Chem C Nanomater Interfaces. 2024; 128(9):3674-3684.

PMID: 38476828 PMC: 10926162. DOI: 10.1021/acs.jpcc.3c08269.


Water in the Electrical Double Layer of Ionic Liquids on Graphene.

Zheng Q, Goodwin Z, Gopalakrishnan V, Hoane A, Han M, Zhang R ACS Nano. 2023; 17(10):9347-9360.

PMID: 37163519 PMC: 10210538. DOI: 10.1021/acsnano.3c01043.


Critical role of water structure around interlayer ions for ion storage in layered double hydroxides.

Sudare T, Yamaguchi T, Ueda M, Shiiba H, Tanaka H, Tipplook M Nat Commun. 2022; 13(1):6448.

PMID: 36307449 PMC: 9616869. DOI: 10.1038/s41467-022-34124-9.


Ion Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types.

Escobar-Teran F, Perrot H, Sel O Materials (Basel). 2022; 15(5).

PMID: 35269098 PMC: 8912032. DOI: 10.3390/ma15051867.


References
1.
Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y . Capacitance of carbon-based electrical double-layer capacitors. Nat Commun. 2014; 5:3317. DOI: 10.1038/ncomms4317. View

2.
Ye J, Tan H, Wu S, Ni K, Pan F, Liu J . Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro-Supercapacitors with Ultrahigh Power Output. Adv Mater. 2018; 30(27):e1801384. DOI: 10.1002/adma.201801384. View

3.
Sarau G, Heilmann M, Bashouti M, Latzel M, Tessarek C, Christiansen S . Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures. ACS Appl Mater Interfaces. 2017; 9(11):10003-10011. DOI: 10.1021/acsami.7b00067. View

4.
Gebbie M, Smith A, Dobbs H, Lee A, Warr G, Banquy X . Long range electrostatic forces in ionic liquids. Chem Commun (Camb). 2016; 53(7):1214-1224. DOI: 10.1039/c6cc08820a. View

5.
Velpula G, Phillipson R, Lian J, Cornil D, Walke P, Verguts K . Graphene Meets Ionic Liquids: Fermi Level Engineering via Electrostatic Forces. ACS Nano. 2019; 13(3):3512-3521. DOI: 10.1021/acsnano.8b09768. View