» Articles » PMID: 33547313

The Cuban Human Brain Mapping Project, a Young and Middle Age Population-based EEG, MRI, and Cognition Dataset

Abstract

The Cuban Human Brain Mapping Project (CHBMP) repository is an open multimodal neuroimaging and cognitive dataset from 282 young and middle age healthy participants (31.9 ± 9.3 years, age range 18-68 years). This dataset was acquired from 2004 to 2008 as a subset of a larger stratified random sample of 2,019 participants from La Lisa municipality in La Habana, Cuba. The exclusion criteria included the presence of disease or brain dysfunctions. Participant data that is being shared comprises i) high-density (64-120 channels) resting-state electroencephalograms (EEG), ii) magnetic resonance images (MRI), iii) psychological tests (MMSE, WAIS-III, computerized go-no go reaction time), as well as iv,) demographic information (age, gender, education, ethnicity, handedness, and weight). The EEG data contains recordings with at least 30 minutes in duration including the following conditions: eyes closed, eyes open, hyperventilation, and subsequent recovery. The MRI consists of anatomical T1 as well as diffusion-weighted (DWI) images acquired on a 1.5 Tesla system. The dataset presented here is hosted by Synapse.org and available at https://chbmp-open.loris.ca .

Citing Articles

Predicting Subject Traits From Brain Spectral Signatures: An Application to Brain Ageing.

Jarne C, Griffin B, Vidaurre D Hum Brain Mapp. 2024; 45(18):e70096.

PMID: 39705006 PMC: 11660765. DOI: 10.1002/hbm.70096.


Large-scale Normative Modeling of Brain Microstructure.

Villalon-Reina J, Zhu A, Nir T, Thomopoulos S, Laltoo E, Kushan L 2023 19th Int Symp Med Inf Process Anal SIPAIM (2023). 2024; 2023.

PMID: 39479180 PMC: 11524148. DOI: 10.1109/SIPAIM56729.2023.10373451.


Ten quick tips for clinical electroencephalographic (EEG) data acquisition and signal processing.

Cisotto G, Chicco D PeerJ Comput Sci. 2024; 10:e2256.

PMID: 39314688 PMC: 11419606. DOI: 10.7717/peerj-cs.2256.


Quality over quantity: powering neuroimaging samples in psychiatry.

Makowski C, Nichols T, Dale A Neuropsychopharmacology. 2024; 50(1):58-66.

PMID: 38902353 PMC: 11525971. DOI: 10.1038/s41386-024-01893-4.


Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review.

Kang J, Bae J, Jeon Y Bioengineering (Basel). 2024; 11(5).

PMID: 38790286 PMC: 11118246. DOI: 10.3390/bioengineering11050418.


References
1.
Iturria-Medina Y, Canales-Rodriguez E, Melie-Garcia L, Valdes-Hernandez P, Martinez-Montes E, Aleman-Gomez Y . Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage. 2007; 36(3):645-60. DOI: 10.1016/j.neuroimage.2007.02.012. View

2.
Babayan A, Erbey M, Kumral D, Reinelt J, Reiter A, Robbig J . A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci Data. 2019; 6:180308. PMC: 6371893. DOI: 10.1038/sdata.2018.308. View

3.
Yamashita A, Yahata N, Itahashi T, Lisi G, Yamada T, Ichikawa N . Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol. 2019; 17(4):e3000042. PMC: 6472734. DOI: 10.1371/journal.pbio.3000042. View

4.
Valdes P, Valdes M, Carballo J, Alvarez A, Diaz G, Biscay R . QEEG in a public health system. Brain Topogr. 1992; 4(4):259-66. DOI: 10.1007/BF01135563. View

5.
Gorgolewski K, Auer T, Calhoun V, Craddock R, Das S, Duff E . The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016; 3:160044. PMC: 4978148. DOI: 10.1038/sdata.2016.44. View