A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention
Overview
Neurology
Pharmacology
Authors
Affiliations
Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
The Role of Extracellular Vesicles in Pandemic Viral Infections.
Shim W, Lee A, Lee J J Microbiol. 2024; 62(6):419-427.
PMID: 38916789 DOI: 10.1007/s12275-024-00144-x.
DAvila H, Lima C, Rampinelli P, Mateus L, Sousa Silva R, Correa J Int J Mol Sci. 2024; 25(1).
PMID: 38203811 PMC: 10778989. DOI: 10.3390/ijms25010640.
Extracellular Vesicles: The Invisible Heroes and Villains of COVID-19 Central Neuropathology.
Chang H, Chen E, Hu Y, Wu L, Deng L, Ye-Lehmann S Adv Sci (Weinh). 2023; 11(10):e2305554.
PMID: 38143270 PMC: 10933635. DOI: 10.1002/advs.202305554.
Assessing Extracellular Vesicles in Human Biofluids Using Flow-Based Analyzers.
Yim K, Krzyzaniak O, Al Hrout A, Peacock B, Chahwan R Adv Healthc Mater. 2023; 12(32):e2301706.
PMID: 37800440 PMC: 11469288. DOI: 10.1002/adhm.202301706.
Advances in developing ACE2 derivatives against SARS-CoV-2.
Zhang H, Lv P, Jiang J, Liu Y, Yan R, Shu S Lancet Microbe. 2023; 4(5):e369-e378.
PMID: 36934742 PMC: 10019897. DOI: 10.1016/S2666-5247(23)00011-3.