» Articles » PMID: 33544078

Cycles, Sources, and Sinks: Conceptualizing How Phosphate Balance Modulates Carbon Flux Using Yeast Metabolic Networks

Overview
Journal Elife
Specialty Biology
Date 2021 Feb 5
PMID 33544078
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Phosphates are ubiquitous molecules that enable critical intracellular biochemical reactions. Therefore, cells have elaborate responses to phosphate limitation. Our understanding of long-term transcriptional responses to phosphate limitation is extensive. Contrastingly, a systems-level perspective presenting unifying biochemical concepts to interpret how phosphate balance is critically coupled to (and controls) metabolic information flow is missing. To conceptualize such processes, utilizing yeast metabolic networks we categorize phosphates utilized in metabolism into cycles, sources and sinks. Through this, we identify metabolic reactions leading to putative phosphate sources or sinks. With this conceptualization, we illustrate how mass action driven flux towards sources and sinks enable cells to manage phosphate availability during transient/immediate phosphate limitations. We thereby identify how intracellular phosphate availability will predictably alter specific nodes in carbon metabolism, and determine signature cellular metabolic states. Finally, we identify a need to understand intracellular phosphate pools, in order to address mechanisms of phosphate regulation and restoration.

Citing Articles

Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae.

Brewis H, Stirling P, Kobor M PLoS Genet. 2025; 21(1):e1011566.

PMID: 39836664 PMC: 11761084. DOI: 10.1371/journal.pgen.1011566.


Inability of Ogataea parapolymorpha pho91-Δ mutant to produce active methanol oxidase can be compensated by inactivation of the PHO87 gene.

Farofonova V, Karginov A, Zvonarev A, Kulakovskaya E, Agaphonov M, Kulakovskaya T Folia Microbiol (Praha). 2024; .

PMID: 39729153 DOI: 10.1007/s12223-024-01236-2.


The deubiquitinase Ubp3/Usp10 constrains glucose-mediated mitochondrial repression via phosphate budgeting.

Vengayil V, Niphadkar S, Adhikary S, Varahan S, Laxman S Elife. 2024; 12.

PMID: 39324403 PMC: 11426969. DOI: 10.7554/eLife.90293.


Establishing cell suitability for high-level production of licorice triterpenoids in yeast.

Sun W, Wan S, Liu C, Wang R, Zhang H, Qin L Acta Pharm Sin B. 2024; 14(9):4134-4148.

PMID: 39309497 PMC: 11413661. DOI: 10.1016/j.apsb.2024.04.032.


Polyphosphate affects cytoplasmic and chromosomal dynamics in nitrogen-starved .

Magkiriadou S, Stepp W, Newman D, Manley S, Racki L Proc Natl Acad Sci U S A. 2024; 121(15):e2313004121.

PMID: 38564631 PMC: 11009631. DOI: 10.1073/pnas.2313004121.


References
1.
Desfougeres Y, Wilson M, Laha D, Miller G, Saiardi A . ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism. Proc Natl Acad Sci U S A. 2019; 116(49):24551-24561. PMC: 6900528. DOI: 10.1073/pnas.1911431116. View

2.
Kukko E, Saarento H . Accumulation of pyrophosphate in Escherichia coli. Relationship to growth and nucleotide synthesis. Arch Microbiol. 1983; 136(3):209-11. DOI: 10.1007/BF00409846. View

3.
Belenky P, Racette F, Bogan K, McClure J, Smith J, Brenner C . Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell. 2007; 129(3):473-84. DOI: 10.1016/j.cell.2007.03.024. View

4.
Saiardi A . How inositol pyrophosphates control cellular phosphate homeostasis?. Adv Biol Regul. 2012; 52(2):351-9. DOI: 10.1016/j.jbior.2012.03.002. View

5.
Mouillon J, Persson B . New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res. 2006; 6(2):171-6. DOI: 10.1111/j.1567-1364.2006.00036.x. View