Lin Q, Zhao W, Zhang H, Chen W, Lian S, Ruan Q
Front Cardiovasc Med. 2025; 12:1444323.
PMID: 39925976
PMC: 11802525.
DOI: 10.3389/fcvm.2025.1444323.
Abe D, Inaji M, Hase T, Suehiro E, Shiomi N, Yatsushige H
Front Neurol. 2025; 15():1502153.
PMID: 39830200
PMC: 11739101.
DOI: 10.3389/fneur.2024.1502153.
Lin Y, Shi T, Kong G
Kidney Med. 2025; 7(1):100936.
PMID: 39758155
PMC: 11699606.
DOI: 10.1016/j.xkme.2024.100936.
Ba-Aoum M, Alrezq M, Datta J, Triantis K
Front Big Data. 2024; 7:1449572.
PMID: 39735162
PMC: 11672345.
DOI: 10.3389/fdata.2024.1449572.
Al-Absi D, Simsekler M, Omar M, Anwar S
BMC Med Inform Decis Mak. 2024; 24(1):337.
PMID: 39543611
PMC: 11566964.
DOI: 10.1186/s12911-024-02758-y.
Leveraging machine learning to enhance appointment adherence at a novel post-discharge care transition clinic.
Lee S, Eagleson R, Hearld L, Gibson M, Hearld K, Hall A
JAMIA Open. 2024; 7(4):ooae086.
PMID: 39524609
PMC: 11549956.
DOI: 10.1093/jamiaopen/ooae086.
The lasting effects of childhood trauma on developing psychiatric symptoms: A population-based, large-scale comparison study.
Jin Y, Xu S, Shao Z, Luo X, Wilson A, Li J
Glob Ment Health (Camb). 2024; 11:e98.
PMID: 39464554
PMC: 11504938.
DOI: 10.1017/gmh.2024.100.
The clinical applications of ensemble machine learning based on the Bagging strategy for in-hospital mortality of coronary artery bypass grafting surgery.
Xu K, Shan L, Bai Y, Shi Y, Lv M, Li W
Heliyon. 2024; 10(19):e38435.
PMID: 39403488
PMC: 11471463.
DOI: 10.1016/j.heliyon.2024.e38435.
Combination of machine learning algorithms with natural language processing may increase the probability of bacteremia detection in the emergency department: A retrospective, big-data analysis of 94,482 patients.
Ben-Haim G, Yosef M, Rowand E, Ben-Yosef J, Berman A, Sina S
Digit Health. 2024; 10:20552076241277673.
PMID: 39291149
PMC: 11406632.
DOI: 10.1177/20552076241277673.
Advanced Machine Learning Models for Predicting Post-Thrombolysis Hemorrhagic Transformation in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis.
Jiang Y, Zhao Q, Li A, Wu Z, Liu L, Lin F
Clin Appl Thromb Hemost. 2024; 30:10760296241279800.
PMID: 39262220
PMC: 11409297.
DOI: 10.1177/10760296241279800.
Exploring Predictive Factors for Heart Failure Progression in Hypertensive Patients Based on Medical Diagnosis Data from the MIMIC-IV Database.
Jung J, Kim D, Hwang I
Bioengineering (Basel). 2024; 11(6).
PMID: 38927767
PMC: 11200608.
DOI: 10.3390/bioengineering11060531.
Identifying Frailty in Older Adults Receiving Home Care Assessment Using Machine Learning: Longitudinal Observational Study on the Role of Classifier, Feature Selection, and Sample Size.
Pan C, Luo H, Cheung G, Zhou H, Cheng R, Cullum S
JMIR AI. 2024; 3:e44185.
PMID: 38875533
PMC: 11041467.
DOI: 10.2196/44185.
Social signals predict contemporary art prices better than visual features, particularly in emerging markets.
Lee K, Park J, Goree S, Crandall D, Ahn Y
Sci Rep. 2024; 14(1):11615.
PMID: 38773156
PMC: 11109285.
DOI: 10.1038/s41598-024-60957-z.
Machine learning for prediction of acute kidney injury in patients diagnosed with sepsis in critical care.
Shi J, Han H, Chen S, Liu W, Li Y
PLoS One. 2024; 19(4):e0301014.
PMID: 38603693
PMC: 11008834.
DOI: 10.1371/journal.pone.0301014.
Forecasting Acute Kidney Injury and Resource Utilization in ICU patients using longitudinal, multimodal models.
Tan Y, Dede M, Mohanty V, Dou J, Hill H, Bernstam E
medRxiv. 2024; .
PMID: 38559064
PMC: 10980131.
DOI: 10.1101/2024.03.14.24304230.
Leveraging explainable artificial intelligence to optimize clinical decision support.
Liu S, McCoy A, Peterson J, Lasko T, Sittig D, Nelson S
J Am Med Inform Assoc. 2024; 31(4):968-974.
PMID: 38383050
PMC: 10990514.
DOI: 10.1093/jamia/ocae019.
Investigation on explainable machine learning models to predict chronic kidney diseases.
Ghosh S, Khandoker A
Sci Rep. 2024; 14(1):3687.
PMID: 38355876
PMC: 10866953.
DOI: 10.1038/s41598-024-54375-4.
A predictive model for postoperative adverse outcomes following surgical treatment of acute type A aortic dissection based on machine learning.
Xie L, Xie Y, Wu Q, He J, Lin X, Qiu Z
J Clin Hypertens (Greenwich). 2024; 26(3):251-261.
PMID: 38341621
PMC: 10918704.
DOI: 10.1111/jch.14774.
Machine Learning Models for Prediction of Diabetic Microvascular Complications.
Kanbour S, Harris C, Lalani B, Wolf R, Fitipaldi H, Gomez M
J Diabetes Sci Technol. 2024; 18(2):273-286.
PMID: 38189280
PMC: 10973856.
DOI: 10.1177/19322968231223726.
Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database.
Guo J, Cheng H, Wang Z, Qiao M, Li J, Lyu J
Front Neurol. 2024; 14:1290117.
PMID: 38162445
PMC: 10755941.
DOI: 10.3389/fneur.2023.1290117.