Gutta S, Ong W, Sajeed S, Chern B, Gulati Kansal M, Khan F
Eur J Med Res. 2025; 30(1):166.
PMID: 40083017
PMC: 11907874.
DOI: 10.1186/s40001-025-02402-z.
Orhan F, Kurutkan M
BMC Health Serv Res. 2025; 25(1):366.
PMID: 40075408
PMC: 11900254.
DOI: 10.1186/s12913-025-12502-5.
Sullivan B, Barker E, MacGregor L, Gorman L, Williams P, Bhamber R
BMC Med Inform Decis Mak. 2025; 25(1):123.
PMID: 40065374
PMC: 11892292.
DOI: 10.1186/s12911-025-02955-3.
Soares Ferreira Junior A, Lessa M, Sanborn K, Gordee A, Kuchibhatla M, Karafin M
J Clin Apher. 2025; 40(2):e70013.
PMID: 40045567
PMC: 11893082.
DOI: 10.1002/jca.70013.
Juang Y, Ang L, Seow W
Sci Rep. 2025; 15(1):4259.
PMID: 40038330
PMC: 11880538.
DOI: 10.1038/s41598-024-83875-6.
Prognostic Models of Mortality Following First-Ever Acute Ischemic Stroke: A Population-Based Retrospective Cohort Study.
Mohammed M, Zainal H, Ong S, Tangiisuran B, Aziz F, Sidek N
Health Sci Rep. 2025; 8(2):e70445.
PMID: 39957974
PMC: 11825595.
DOI: 10.1002/hsr2.70445.
Use of machine learning algorithms to construct models of symptom burden cluster risk in breast cancer patients undergoing chemotherapy.
Huang Q, Yang Y, Yuan C, Zhang W, Zong X, Wu F
Support Care Cancer. 2025; 33(3):190.
PMID: 39945884
PMC: 11825622.
DOI: 10.1007/s00520-025-09236-9.
Using machine learning to predict outcomes following transcarotid artery revascularization.
Li B, Eisenberg N, Beaton D, Lee D, Al-Omran L, Wijeysundera D
Sci Rep. 2025; 15(1):3924.
PMID: 39890848
PMC: 11785798.
DOI: 10.1038/s41598-024-81625-2.
Functional gastrointestinal disorders predictors in neonates and toddlers: A machine learning approach to risk assessment.
Indrio F, Masciari E, Marchese F, Rinaldi M, Maffei G, Gangai I
Heliyon. 2025; 11(1):e41516.
PMID: 39834435
PMC: 11743318.
DOI: 10.1016/j.heliyon.2024.e41516.
Patient perspective on predictive models in healthcare: translation into practice, ethical implications and limitations?.
Markham S
BMJ Health Care Inform. 2025; 32(1.
PMID: 39824519
PMC: 11751774.
DOI: 10.1136/bmjhci-2024-101153.
Exploring the application of machine learning to identify the correlations between phthalate esters and disease: enhancing nursing assessments.
Wu H, Liao C, Peng C, Lee T, Liao P
Health Inf Sci Syst. 2024; 13(1):10.
PMID: 39736874
PMC: 11683034.
DOI: 10.1007/s13755-024-00324-4.
Predicting lack of clinical improvement following varicose vein ablation using machine learning.
Li B, Eisenberg N, Beaton D, Lee D, Al-Omran L, Wijeysundera D
J Vasc Surg Venous Lymphat Disord. 2024; 13(3):102162.
PMID: 39732288
PMC: 11803835.
DOI: 10.1016/j.jvsv.2024.102162.
Characterizing sociodemographic disparities and predictors of Gestational Diabetes Mellitus among Asian and Native Hawaiian or other Pacific Islander pregnant people: an analysis of PRAMS data, 2016-2022.
Go M, Sokol N, Ward L, Anderson M, Sun S
BMC Pregnancy Childbirth. 2024; 24(1):833.
PMID: 39707261
PMC: 11661331.
DOI: 10.1186/s12884-024-07034-5.
Predicting nodal response to neoadjuvant treatment in breast cancer with core biopsy biomarkers of tumor microenvironment using data mining.
Pislar N, Gasljevic G, Matos E, Pilko G, Zgajnar J, Perhavec A
Breast Cancer Res Treat. 2024; 210(1):87-94.
PMID: 39496911
PMC: 11787214.
DOI: 10.1007/s10549-024-07539-9.
Development and validation of a nomogram to predict acute postoperative urinary retention in ischemic stroke patients following femoral artery puncture.
Zhu M, Zhang W, Lyu A, Gao J
Front Neurol. 2024; 15:1435097.
PMID: 39440255
PMC: 11493615.
DOI: 10.3389/fneur.2024.1435097.
Machine learning techniques to identify risk factors of breast cancer among women in Mashhad, Iran.
Khaleghi A, Tabatabaei S, Hosseini Z, Soodejani M, Farkhani E, Yaghoobi M
J Prev Med Hyg. 2024; 65(2):E221-E226.
PMID: 39430983
PMC: 11487743.
DOI: 10.15167/2421-4248/jpmh2024.65.2.3045.
Predicting the Time to Relapse Following Withdrawal from Different Biologics in Patients with Psoriasis who Responded to Therapy: A 12-Year Multicenter Cohort Study.
Huang Y, Hung S, Lee C, Wu N, Hui R, Tsai T
Am J Clin Dermatol. 2024; 25(6):997-1008.
PMID: 39283586
DOI: 10.1007/s40257-024-00887-8.
Single‑nucleotide polymorphisms in the promoter of the gene encoding for C‑reactive protein associated with acute coronary syndrome.
Lopez-Roblero A, Serrano-Guzman E, Guerrero-Baez R, Delgado-Enciso I, Gomez-Manzo S, Aguilar-Fuentes J
Biomed Rep. 2024; 21(5):150.
PMID: 39247423
PMC: 11375626.
DOI: 10.3892/br.2024.1838.
Risk Assessment Tool in Predicting the Therapeutic Outcomes of Antiseizure Medication in Adults with Epilepsy.
Rusli R, Makmor Bakry M, Mohamed Shah N, Loo X, Hung S
Ther Clin Risk Manag. 2024; 20:529-541.
PMID: 39220771
PMC: 11363947.
DOI: 10.2147/TCRM.S467975.
Proenkephalin improves cardio-renal risk prediction in acute coronary syndromes: the KID-ACS score.
Wenzl F, Wang P, Arrigo M, Parenica J, Jones D, Bruno F
Eur Heart J. 2024; 46(1):38-54.
PMID: 39215600
PMC: 11695896.
DOI: 10.1093/eurheartj/ehae602.