6.
Hayes S, Webb S, Bargar J, ODay P, Maier R, Chorover J
. Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings. Environ Sci Technol. 2012; 46(11):5834-41.
PMC: 3376710.
DOI: 10.1021/es300603s.
View
7.
Juhasz A, Weber J, Smith E
. Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. J Hazard Mater. 2011; 186(2-3):1870-9.
DOI: 10.1016/j.jhazmat.2010.12.095.
View
8.
van der Kallen C, Gosselin M, Zagury G
. Oral and inhalation bioaccessibility of metal(loid)s in chromated copper arsenate (CCA)-contaminated soils: Assessment of particle size influence. Sci Total Environ. 2020; 734:139412.
DOI: 10.1016/j.scitotenv.2020.139412.
View
9.
Rhoads K, Sanders C
. Lung clearance, translocation, and acute toxicity of arsenic, beryllium, cadmium, cobalt, lead, selenium, vanadium, and ytterbium oxides following deposition in rat lung. Environ Res. 1985; 36(2):359-78.
DOI: 10.1016/0013-9351(85)90031-3.
View
10.
Ayoubi S, Soltani Z, Khademi H
. Particle Size Distribution of Heavy Metals and Magnetic Susceptibility in an Industrial Site. Bull Environ Contam Toxicol. 2018; 100(5):708-714.
DOI: 10.1007/s00128-018-2316-6.
View
11.
Choi Y, Park K, Kim I, Kim S
. Combined toxic effect of airborne heavy metals on human lung cell line A549. Environ Geochem Health. 2016; 40(1):271-282.
DOI: 10.1007/s10653-016-9901-6.
View
12.
Juhasz A, Weber J, Smith E, Naidu R, Marschner B, Rees M
. Evaluation of SBRC-gastric and SBRC-intestinal methods for the prediction of in vivo relative lead bioavailability in contaminated soils. Environ Sci Technol. 2009; 43(12):4503-9.
DOI: 10.1021/es803238u.
View
13.
Martin R, Dowling K, Pearce D, Florentine S, McKnight S, Stelcer E
. Trace metal content in inhalable particulate matter (PM and PM) collected from historical mine waste deposits using a laboratory-based approach. Environ Geochem Health. 2016; 39(3):549-563.
DOI: 10.1007/s10653-016-9833-1.
View
14.
Dang Z, Liu C, Haigh M
. Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut. 2002; 118(3):419-26.
DOI: 10.1016/s0269-7491(01)00285-8.
View
15.
Guney M, Chapuis R, Zagury G
. Lung bioaccessibility of contaminants in particulate matter of geological origin. Environ Sci Pollut Res Int. 2016; 23(24):24422-24434.
DOI: 10.1007/s11356-016-6623-3.
View
16.
Ettler V, Vitkova M, Mihaljevic M, Sebek O, Klementova M, Veselovsky F
. Dust from Zambian smelters: mineralogy and contaminant bioaccessibility. Environ Geochem Health. 2014; 36(5):919-33.
DOI: 10.1007/s10653-014-9609-4.
View
17.
Brown J, Gordon T, Price O, Asgharian B
. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol. 2013; 10:12.
PMC: 3640939.
DOI: 10.1186/1743-8977-10-12.
View
18.
Zota A, Willis R, Jim R, Norris G, Shine J, Duvall R
. Impact of mine waste on airborne respirable particulates in northeastern Oklahoma, United States. J Air Waste Manag Assoc. 2009; 59(11):1347-57.
DOI: 10.3155/1047-3289.59.11.1347.
View
19.
Ghio A, Kim C, Devlin R
. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med. 2000; 162(3 Pt 1):981-8.
DOI: 10.1164/ajrccm.162.3.9911115.
View
20.
Okorie A, Entwistle J, Dean J
. Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere. 2011; 86(5):460-7.
DOI: 10.1016/j.chemosphere.2011.09.047.
View