» Articles » PMID: 33527522

Probing the Local Reaction Environment During High Turnover Carbon Dioxide Reduction with Ag-Based Gas Diffusion Electrodes

Overview
Journal Chemistry
Specialty Chemistry
Date 2021 Feb 2
PMID 33527522
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH and H O activity that in turn can possibly affect activity, stability, and selectivity of the CO RR. We determine the local OH and H O activity in close proximity to a CO -converting Ag-based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear-force-based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt-tip nanosensor. We show that high turnover HER/CO RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.

Citing Articles

Insights of the Proton Transport Efficiency of a Membrane Electrode Assembly by Operando Monitoring of the Local Proton Concentration during Water Oxidation.

Antony R, Li L, Santana Santos C, Limani N, Dieckhofer S, Quast T ACS Mater Lett. 2024; 6(12):5333-5339.

PMID: 39639954 PMC: 11615946. DOI: 10.1021/acsmaterialslett.4c01655.


In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia.

Zhang J, Quast T, Eid B, Chen Y, Zerdoumi R, Dieckhofer S Nat Commun. 2024; 15(1):8583.

PMID: 39362855 PMC: 11450097. DOI: 10.1038/s41467-024-52780-x.


Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis.

Santana Santos C, Jaato B, Sanjuan I, Schuhmann W, Andronescu C Chem Rev. 2023; 123(8):4972-5019.

PMID: 36972701 PMC: 10168669. DOI: 10.1021/acs.chemrev.2c00766.


characterization of continuous flow CO electrolyzers: current status and future prospects.

Hursan D, Janaky C Chem Commun (Camb). 2023; 59(11):1395-1414.

PMID: 36655495 PMC: 9894021. DOI: 10.1039/d2cc06065e.


Combining Nanoconfinement in Ag Core/Porous Cu Shell Nanoparticles with Gas Diffusion Electrodes for Improved Electrocatalytic Carbon Dioxide Reduction.

Junqueira J, OMara P, Wilde P, Dieckhofer S, Benedetti T, Andronescu C ChemElectroChem. 2022; 8(24):4848-4853.

PMID: 35909946 PMC: 9303450. DOI: 10.1002/celc.202100906.


References
1.
Sheng W, Zhuang Z, Gao M, Zheng J, Chen J, Yan Y . Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun. 2015; 6:5848. DOI: 10.1038/ncomms6848. View

2.
Hall A, Yoon Y, Wuttig A, Surendranath Y . Mesostructure-Induced Selectivity in CO2 Reduction Catalysis. J Am Chem Soc. 2015; 137(47):14834-7. DOI: 10.1021/jacs.5b08259. View

3.
Michalak M, Kurel M, Jedraszko J, Toczydlowska D, Wittstock G, Opallo M . Voltammetric pH Nanosensor. Anal Chem. 2015; 87(23):11641-5. DOI: 10.1021/acs.analchem.5b03482. View

4.
Zhang F, Co A . Direct Evidence of Local pH Change and the Role of Alkali Cation during CO Electroreduction in Aqueous Media. Angew Chem Int Ed Engl. 2019; 59(4):1674-1681. DOI: 10.1002/anie.201912637. View

5.
Monteiro M, Jacobse L, Touzalin T, Koper M . Mediator-Free SECM for Probing the Diffusion Layer pH with Functionalized Gold Ultramicroelectrodes. Anal Chem. 2019; 92(2):2237-2243. PMC: 6977089. DOI: 10.1021/acs.analchem.9b04952. View