» Articles » PMID: 33511368

SIMON: Open-Source Knowledge Discovery Platform

Abstract

Data analysis and knowledge discovery has become more and more important in biology and medicine with the increasing complexity of biological datasets, but the necessarily sophisticated programming skills and in-depth understanding of algorithms needed pose barriers to most biologists and clinicians to perform such research. We have developed a modular open-source software, SIMON, to facilitate the application of 180+ state-of-the-art machine-learning algorithms to high-dimensional biomedical data. With an easy-to-use graphical user interface, standardized pipelines, and automated approach for machine learning and other statistical analysis methods, SIMON helps to identify optimal algorithms and provides a resource that empowers non-technical and technical researchers to identify crucial patterns in biomedical data.

Citing Articles

Integrative Mapping of Pre-existing Immune Landscapes for Vaccine Response Prediction.

Hao S, Tomic I, Lindsey B, Jagne Y, Hoschler K, Meijer A bioRxiv. 2025; .

PMID: 39896552 PMC: 11785181. DOI: 10.1101/2025.01.22.634302.


GeM-LR: Discovering predictive biomarkers for small datasets in vaccine studies.

Lin L, Spreng R, Seaton K, Dennison S, Dahora L, Schuster D PLoS Comput Biol. 2024; 20(11):e1012581.

PMID: 39541411 PMC: 11594404. DOI: 10.1371/journal.pcbi.1012581.


Obesity differs from diabetes mellitus in antibody and T-cell responses post-COVID-19 recovery.

Ali M, Longet S, Neale I, Rongkard P, Chowdhury F, Hill J Clin Exp Immunol. 2024; 218(1):78-92.

PMID: 38642547 PMC: 11404124. DOI: 10.1093/cei/uxae030.


Robustness and reproducibility for AI learning in biomedical sciences: RENOIR.

Barberis A, Aerts H, Buffa F Sci Rep. 2024; 14(1):1933.

PMID: 38253545 PMC: 10810363. DOI: 10.1038/s41598-024-51381-4.


Omicron infection following vaccination enhances a broad spectrum of immune responses dependent on infection history.

Hornsby H, Nicols A, Longet S, Liu C, Tomic A, Angyal A Nat Commun. 2023; 14(1):5065.

PMID: 37604803 PMC: 10442364. DOI: 10.1038/s41467-023-40592-4.


References
1.
Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong D . Accessible, curated metagenomic data through ExperimentHub. Nat Methods. 2017; 14(11):1023-1024. PMC: 5862039. DOI: 10.1038/nmeth.4468. View

2.
Warsinske H, Rao A, Moreira F, Santos P, Liu A, Scott M . Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Netw Open. 2019; 1(6):e183779. PMC: 6324428. DOI: 10.1001/jamanetworkopen.2018.3779. View

3.
Horowitz A, Strauss-Albee D, Leipold M, Kubo J, Nemat-Gorgani N, Dogan O . Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013; 5(208):208ra145. PMC: 3918221. DOI: 10.1126/scitranslmed.3006702. View

4.
Kourou K, Exarchos T, Exarchos K, Karamouzis M, Fotiadis D . Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015; 13:8-17. PMC: 4348437. DOI: 10.1016/j.csbj.2014.11.005. View

5.
Sippy R, Farrell D, Lichtenstein D, Nightingale R, Harris M, Toth J . Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection. PLoS Negl Trop Dis. 2020; 14(2):e0007969. PMC: 7046343. DOI: 10.1371/journal.pntd.0007969. View