» Articles » PMID: 33511013

Interface Engineering of Co-LDH@MOF Heterojunction in Highly Stable and Efficient Oxygen Evolution Reaction

Overview
Journal Adv Sci (Weinh)
Date 2021 Jan 29
PMID 33511013
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The electrochemical splitting of water into hydrogen and oxygen is considered one of the most promising approaches to generate clean and sustainable energy. However, the low efficiency of the oxygen evolution reaction (OER) acts as a bottleneck in the water splitting process. Herein, interface engineering heterojunctions between ZIF-67 and layered double hydroxide (LDH) are designed to enhance the catalytic activity of the OER and the stability of Co-LDH. The interface is built by the oxygen (O) of Co-LDH and nitrogen (N) of the 2-methylimidazole ligand in ZIF-67, which modulates the local electronic structure of the catalytic active site. Density functional theory calculations demonstrate that the interfacial interaction can enhance the strength of the Co-O bond in Co-LDH, which makes it easier to break the H-O bond and results in a lower free energy change in the potential-determining step at the heterointerface in the OER process. Therefore, the Co-LDH@ZIF-67 exhibits superior OER activity with a low overpotential of 187 mV at a current density of 10 mA cm and long-term electrochemical stability for more than 50 h. This finding provides a design direction for improving the catalytic activity of OER.

Citing Articles

Multi-dimensional composite catalyst NiFeCoMoS/NFF for overall electrochemical water splitting.

Tan Z, Guo S, Wang W, Li G, Yan Z RSC Adv. 2025; 15(7):5305-5315.

PMID: 39963461 PMC: 11831736. DOI: 10.1039/d4ra08605h.


High-Density Atomic Level Defect Engineering of 2D Fe-Based Metal-Organic Frameworks Boosts Oxygen and Hydrogen Evolution Reactions.

Zhao X, Wang S, Cao Y, Li Y, Portniagin A, Tang B Adv Sci (Weinh). 2024; 11(47):e2405936.

PMID: 39475419 PMC: 11653667. DOI: 10.1002/advs.202405936.


Nickel-Cobalt Bimetal Hierarchical Hollow Nanosheets for Efficient Oxygen Evolution in Seawater.

An R, Li G, Liu Z Materials (Basel). 2024; 17(10).

PMID: 38793365 PMC: 11123210. DOI: 10.3390/ma17102298.


Oxygen-Bridged Cobalt-Chromium Atomic Pair in MOF-Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media.

Lv Z, Zhang H, Liu C, Li S, Song J, He J Adv Sci (Weinh). 2023; 11(3):e2306678.

PMID: 37997194 PMC: 10797420. DOI: 10.1002/advs.202306678.


In Situ Growth of Nickel-Cobalt Metal Organic Frameworks Guided by a Nickel-Molybdenum Layered Double Hydroxide with Two-Dimensional Nanosheets Forming Flower-Like Struc-Tures for High-Performance Supercapacitors.

Cheng C, Zou Y, Xu F, Xiang C, Sun L Nanomaterials (Basel). 2023; 13(3).

PMID: 36770541 PMC: 9919709. DOI: 10.3390/nano13030581.


References
1.
Li F, Wang P, Huang X, James Young D, Wang H, Braunstein P . Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation. Angew Chem Int Ed Engl. 2019; 58(21):7051-7056. DOI: 10.1002/anie.201902588. View

2.
Wang S, Yao H, Sato S, Kimura K . Inclusion-water-cluster in a three-dimensional superlattice of gold nanoparticles. J Am Chem Soc. 2004; 126(24):7438-9. DOI: 10.1021/ja031822+. View

3.
Wu Y, Li F, Chen W, Xiang Q, Ma Y, Zhu H . Coupling Interface Constructions of MoS /Fe Ni S Heterostructures for Efficient Electrochemical Water Splitting. Adv Mater. 2018; 30(38):e1803151. DOI: 10.1002/adma.201803151. View

4.
Barreca D, Fornasiero P, Gasparotto A, Gombac V, Maccato C, Montini T . The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. ChemSusChem. 2009; 2(3):230-3. DOI: 10.1002/cssc.200900032. View

5.
Kwon H, Jeong H, Lee A, An H, Lee J . Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J Am Chem Soc. 2015; 137(38):12304-11. DOI: 10.1021/jacs.5b06730. View