» Articles » PMID: 33506760

Identification of Ligand-specific G Protein-coupled Receptor States and Prediction of Downstream Efficacy Via Data-driven Modeling

Overview
Journal Elife
Specialty Biology
Date 2021 Jan 28
PMID 33506760
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Ligand binding stabilizes different G protein-coupled receptor states via a complex allosteric process that is not completely understood. Here, we have derived free energy landscapes describing activation of the β adrenergic receptor bound to ligands with different efficacy profiles using enhanced sampling molecular dynamics simulations. These reveal shifts toward active-like states at the Gprotein-binding site for receptors bound to partial and full agonists, and that the ligands modulate the conformational ensemble of the receptor by tuning protein microswitches. We indeed find an excellent correlation between the conformation of the microswitches close to the ligand binding site and in the transmembrane region and experimentally reported cyclic adenosine monophosphate signaling responses. Dimensionality reduction further reveals the similarity between the unique conformational states induced by different ligands, and examining the output of classifiers highlights two distant hotspots governing agonism on transmembrane helices 5 and 7.

Citing Articles

Targeting serotonin receptors with phytochemicals - an in-silico study.

Elalouf A, Rosenfeld A, Maoz H Sci Rep. 2024; 14(1):30307.

PMID: 39638796 PMC: 11621125. DOI: 10.1038/s41598-024-76329-6.


Dynamic Mechanism for Subtype Selectivity of Endocannabinoids.

Dutta S, Zhao L, Shukla D bioRxiv. 2024; .

PMID: 39554065 PMC: 11565827. DOI: 10.1101/2024.10.25.620304.


Cyclopamine modulates smoothened receptor activity in a binding position dependent manner.

Kim K, Bansal P, Shukla D Commun Biol. 2024; 7(1):1207.

PMID: 39342033 PMC: 11438977. DOI: 10.1038/s42003-024-06906-y.


Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor.

Batebi H, Perez-Hernandez G, Rahman S, Lan B, Kamprad A, Shi M Nat Struct Mol Biol. 2024; 31(11):1692-1701.

PMID: 38867113 DOI: 10.1038/s41594-024-01334-2.


The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics.

Yee S, Macdonald C, Mitrovic D, Zhou X, Koleske M, Yang J Mol Cell. 2024; 84(10):1932-1947.e10.

PMID: 38703769 PMC: 11382353. DOI: 10.1016/j.molcel.2024.04.008.


References
1.
Harpole T, Delemotte L . Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim Biophys Acta Biomembr. 2017; 1860(4):909-926. DOI: 10.1016/j.bbamem.2017.10.033. View

2.
Latorraca N, Venkatakrishnan A, Dror R . GPCR Dynamics: Structures in Motion. Chem Rev. 2016; 117(1):139-155. DOI: 10.1021/acs.chemrev.6b00177. View

3.
Matricon P, Ranganathan A, Warnick E, Gao Z, Rudling A, Lambertucci C . Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A adenosine receptor binding site. Sci Rep. 2017; 7(1):6398. PMC: 5526870. DOI: 10.1038/s41598-017-04905-0. View

4.
Rasmussen S, DeVree B, Zou Y, Kruse A, Chung K, Kobilka T . Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature. 2011; 477(7366):549-55. PMC: 3184188. DOI: 10.1038/nature10361. View

5.
Rasmussen S, Choi H, Fung J, Pardon E, Casarosa P, Chae P . Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature. 2011; 469(7329):175-80. PMC: 3058308. DOI: 10.1038/nature09648. View