» Articles » PMID: 33504068

Genetically Encoded Biosensors Based on Fluorescent Proteins

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2021 Jan 28
PMID 33504068
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs.

Citing Articles

Ranking Single Fluorescent Protein-Based Calcium Biosensor Performance by Molecular Dynamics Simulations.

Berksoz M, Atilgan C J Chem Inf Model. 2024; 65(1):338-350.

PMID: 39726324 PMC: 11733952. DOI: 10.1021/acs.jcim.4c01478.


Biosensing strategies using recombinant luminescent proteins and their use for food and environmental analysis.

Pradanas-Gonzalez F, Cortes M, Glahn-Martinez B, Del Barrio M, Purohit P, Benito-Pena E Anal Bioanal Chem. 2024; 416(30):7205-7224.

PMID: 39325139 DOI: 10.1007/s00216-024-05552-x.


Fiber photometry in neuroscience research: principles, applications, and future directions.

Kielbinski M, Bernacka J Pharmacol Rep. 2024; 76(6):1242-1255.

PMID: 39235662 PMC: 11582208. DOI: 10.1007/s43440-024-00646-w.


GRminusRD: A Sensitive Assay to Detect Activation Processes at the Plasma Membrane in Living Cells.

van Haastert P, Keizer-Gunnink I, Kortholt A Methods Mol Biol. 2024; 2814:133-147.

PMID: 38954203 DOI: 10.1007/978-1-0716-3894-1_10.


Novel Estrogen Receptor Dimerization BRET-Based Biosensors for Screening Estrogenic Endocrine-Disrupting Chemicals.

Choi G, Kang H, Suh J, Lee H, Han K, Yoo G Biomater Res. 2024; 28:0010.

PMID: 38464469 PMC: 10923609. DOI: 10.34133/bmr.0010.


References
1.
Kimber W, Trinkle-Mulcahy L, Cheung P, Deak M, Marsden L, Kieloch A . Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J. 2002; 361(Pt 3):525-36. PMC: 1222335. DOI: 10.1042/0264-6021:3610525. View

2.
Villette V, Chavarha M, Dimov I, Bradley J, Pradhan L, Mathieu B . Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell. 2019; 179(7):1590-1608.e23. PMC: 6941988. DOI: 10.1016/j.cell.2019.11.004. View

3.
Henderson M, Trojanowski J, Lee V . α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett. 2019; 709:134316. PMC: 7014913. DOI: 10.1016/j.neulet.2019.134316. View

4.
Shaner N, Patterson G, Davidson M . Advances in fluorescent protein technology. J Cell Sci. 2007; 120(Pt 24):4247-60. DOI: 10.1242/jcs.005801. View

5.
Kerppola T . Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys. 2008; 37:465-87. PMC: 2829326. DOI: 10.1146/annurev.biophys.37.032807.125842. View