» Articles » PMID: 33501650

Urgent-start Peritoneal Dialysis Versus Haemodialysis for People with Chronic Kidney Disease

Overview
Publisher Wiley
Date 2021 Jan 27
PMID 33501650
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Patients with chronic kidney disease (CKD) who require urgent initiation of dialysis but without having a permanent dialysis access have traditionally commenced haemodialysis (HD) using a central venous catheter (CVC). However, several studies have reported that urgent initiation of peritoneal dialysis (PD) is a viable alternative option for such patients.

Objectives: This review aimed to examine the benefits and harms of urgent-start PD compared to HD initiated using a CVC in adults and children with CKD requiring long-term kidney replacement therapy.

Search Methods: We searched the Cochrane Kidney and Transplant Register of Studies up to 25 May 2020 for randomised controlled trials through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. For non-randomised controlled trials, MEDLINE (OVID) (1946 to 11 February 2020) and EMBASE (OVID) (1980 to 11 February 2020) were searched.

Selection Criteria: All randomised controlled trials (RCTs), quasi-RCTs and non-RCTs comparing urgent-start PD to HD initiated using a CVC.

Data Collection And Analysis: Two authors extracted data and assessed the quality of studies independently. Additional information was obtained from the primary investigators. The estimates of effect were analysed using random-effects model and results were presented as risk ratios (RR) with 95% confidence intervals (CI). The GRADE framework was used to make judgments regarding certainty of the evidence for each outcome.

Main Results: Overall, seven observational studies (991 participants) were included: three prospective cohort studies and four retrospective cohort studies. All the outcomes except one (bacteraemia) were graded as very low certainty of evidence given that all included studies were observational studies and few events resulting in imprecision, and inconsistent findings. Urgent-start PD may reduce the incidence of catheter-related bacteraemia compared with HD initiated with a CVC (2 studies, 301 participants: RR 0.13, 95% CI 0.04 to 0.41; I = 0%; low certainty evidence), which translated into 131 fewer bacteraemia episodes per 1000 (95% CI 89 to 145 fewer). Urgent-start PD has uncertain effects on peritonitis risk (2 studies, 301 participants: RR 1.78, 95% CI 0.23 to 13.62; I = 0%; very low certainty evidence), exit-site/tunnel infection (1 study, 419 participants: RR 3.99, 95% CI 1.2 to 12.05; very low certainty evidence), exit-site bleeding (1 study, 178 participants: RR 0.12, 95% CI 0.01 to 2.33; very low certainty evidence), catheter malfunction (2 studies; 597 participants: RR 0.26, 95% CI: 0.07 to 0.91; I = 66%; very low certainty evidence), catheter re-adjustment (2 studies, 225 participants: RR: 0.13; 95% CI 0.00 to 18.61; I = 92%; very low certainty evidence), technique survival (1 study, 123 participants: RR: 1.18, 95% CI 0.87 to 1.61; very low certainty evidence), or patient survival (5 studies, 820 participants; RR 0.68, 95% CI 0.44 to 1.07; I = 0%; very low certainty evidence) compared with HD initiated using a CVC. Two studies using different methods of measurements for hospitalisation reported that hospitalisation was similar although one study reported higher hospitalisation rates in HD initiated using a catheter compared with urgent-start PD.

Authors' Conclusions: Compared with HD initiated using a CVC, urgent-start PD may reduce the risk of bacteraemia and had uncertain effects on other complications of dialysis and technique and patient survival. In summary, there are very few studies directly comparing the outcomes of urgent-start PD and HD initiated using a CVC for patients with CKD who need to commence dialysis urgently. This evidence gap needs to be addressed in future studies.

Citing Articles

A Randomized Controlled Trial Comparing Automated Peritoneal Dialysis and Hemodialysis for Urgent-Start Dialysis in ESRD.

Jin H, Fang W, Wang L, Zang X, Deng Y, Wu G Kidney Int Rep. 2024; 9(9):2627-2634.

PMID: 39291207 PMC: 11403029. DOI: 10.1016/j.ekir.2024.06.032.


Acute Peritoneal Dialysis in a Patient with Severe Uremic Syndrome and Multiple Hemodialysis Access Failure.

Duarsa M, Mahadita G, Kandarini Y Case Rep Nephrol. 2024; 2024:8891887.

PMID: 39135880 PMC: 11319061. DOI: 10.1155/2024/8891887.


Integrated home dialysis model: facilitating home-to-home transition.

Desbiens L, Bargman J, Chan C, Nadeau-Fredette A Clin Kidney J. 2024; 17(Suppl 1):i21-i33.

PMID: 38846416 PMC: 11151120. DOI: 10.1093/ckj/sfae079.


Risk factors of different mortality periods in older patients with end-stage renal disease undergoing urgent-start peritoneal dialysis: a retrospective observational study.

Guo S, Yang L, Zhu X, Zhang X, Sun Z, Meng L BMC Geriatr. 2024; 24(1):343.

PMID: 38622550 PMC: 11020809. DOI: 10.1186/s12877-024-04931-4.


Rate and reasons for peritoneal dialysis dropout following haemodialysis to peritoneal dialysis switch: a systematic review and meta-analysis.

Sun X, McKeaveney C, Shields J, Chan C, Henderson M, Fitzell F BMC Nephrol. 2024; 25(1):99.

PMID: 38493084 PMC: 10943899. DOI: 10.1186/s12882-024-03542-w.


References
1.
Neumann D, Lamprecht J, Robinski M, Mau W, Girndt M . Social relationships and their impact on health-related outcomes in peritoneal versus haemodialysis patients: a prospective cohort study. Nephrol Dial Transplant. 2018; 33(7):1235-1244. DOI: 10.1093/ndt/gfx361. View

2.
Guyatt G, Oxman A, Vist G, Kunz R, Falck-Ytter Y, Alonso-Coello P . GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008; 336(7650):924-6. PMC: 2335261. DOI: 10.1136/bmj.39489.470347.AD. View

3.
Masterson R . The advantages and disadvantages of home hemodialysis. Hemodial Int. 2008; 12 Suppl 1:S16-20. DOI: 10.1111/j.1542-4758.2008.00290.x. View

4.
Jain A, Blake P, Cordy P, Garg A . Global trends in rates of peritoneal dialysis. J Am Soc Nephrol. 2012; 23(3):533-44. PMC: 3294313. DOI: 10.1681/ASN.2011060607. View

5.
Jo Y, Shin S, Lee J, Song J, Park J . Immediate initiation of CAPD following percutaneous catheter placement without break-in procedure. Perit Dial Int. 2007; 27(2):179-83. View