» Articles » PMID: 33501307

Emotion Recognition for Human-Robot Interaction: Recent Advances and Future Perspectives

Overview
Journal Front Robot AI
Date 2021 Jan 27
PMID 33501307
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

A fascinating challenge in the field of human-robot interaction is the possibility to endow robots with emotional intelligence in order to make the interaction more intuitive, genuine, and natural. To achieve this, a critical point is the capability of the robot to infer and interpret human emotions. Emotion recognition has been widely explored in the broader fields of human-machine interaction and affective computing. Here, we report recent advances in emotion recognition, with particular regard to the human-robot interaction context. Our aim is to review the state of the art of currently adopted emotional models, interaction modalities, and classification strategies and offer our point of view on future developments and critical issues. We focus on facial expressions, body poses and kinematics, voice, brain activity, and peripheral physiological responses, also providing a list of available datasets containing data from these modalities.

Citing Articles

Gait-to-Gait Emotional Human-Robot Interaction Utilizing Trajectories-Aware and Skeleton-Graph-Aware Spatial-Temporal Transformer.

Li C, Seng K, Ang L Sensors (Basel). 2025; 25(3).

PMID: 39943373 PMC: 11820152. DOI: 10.3390/s25030734.


Preferred Distance in Human-Drone Interaction.

Wogerbauer E, von Castell C, Welsch R, Hecht H Vision (Basel). 2024; 8(4).

PMID: 39449392 PMC: 11503297. DOI: 10.3390/vision8040059.


Emotional responses of Korean and Chinese women to Hangul phonemes to the gender of an artificial intelligence voice.

Lee M, Lee G, Lee S, Lee J Front Psychol. 2024; 15:1357975.

PMID: 39135868 PMC: 11317464. DOI: 10.3389/fpsyg.2024.1357975.


Emerging Trends of Biomedical Signal Processing in Intelligent Emotion Recognition.

Goshvarpour A Brain Sci. 2024; 14(7).

PMID: 39061369 PMC: 11274954. DOI: 10.3390/brainsci14070628.


Designing, implementing and testing an intervention of affective intelligent agents in nursing virtual reality teaching simulations-a qualitative study.

Loizou M, Arnab S, Lameras P, Hartley T, Loizides F, Kumar P Front Digit Health. 2024; 6:1307817.

PMID: 38698890 PMC: 11063316. DOI: 10.3389/fdgth.2024.1307817.


References
1.
Petrantonakis P, Hadjileontiadis L . Emotion recognition from EEG using higher order crossings. IEEE Trans Inf Technol Biomed. 2009; 14(2):186-97. DOI: 10.1109/TITB.2009.2034649. View

2.
Ko B . A Brief Review of Facial Emotion Recognition Based on Visual Information. Sensors (Basel). 2018; 18(2). PMC: 5856145. DOI: 10.3390/s18020401. View

3.
Goulart C, Valadao C, Delisle-Rodriguez D, Funayama D, Favarato A, Baldo G . Visual and Thermal Image Processing for Facial Specific Landmark Detection to Infer Emotions in a Child-Robot Interaction. Sensors (Basel). 2019; 19(13). PMC: 6650968. DOI: 10.3390/s19132844. View

4.
Kragel P, LaBar K . Decoding the Nature of Emotion in the Brain. Trends Cogn Sci. 2016; 20(6):444-455. PMC: 4875847. DOI: 10.1016/j.tics.2016.03.011. View

5.
Siegel E, Sands M, Van Den Noortgate W, Condon P, Chang Y, Dy J . Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol Bull. 2018; 144(4):343-393. PMC: 5876074. DOI: 10.1037/bul0000128. View