» Articles » PMID: 33485058

Deep Multi-Magnification Networks for Multi-class Breast Cancer Image Segmentation

Overview
Specialty Radiology
Date 2021 Jan 23
PMID 33485058
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Pathologic analysis of surgical excision specimens for breast carcinoma is important to evaluate the completeness of surgical excision and has implications for future treatment. This analysis is performed manually by pathologists reviewing histologic slides prepared from formalin-fixed tissue. In this paper, we present Deep Multi-Magnification Network trained by partial annotation for automated multi-class tissue segmentation by a set of patches from multiple magnifications in digitized whole slide images. Our proposed architecture with multi-encoder, multi-decoder, and multi-concatenation outperforms other single and multi-magnification-based architectures by achieving the highest mean intersection-over-union, and can be used to facilitate pathologists' assessments of breast cancer.

Citing Articles

Colorectal cancer tumor grade segmentation: A new dataset and baseline results.

Arslan D, Sehlaver S, Guder E, Temena M, Bahcekapili A, Ozdemir U Heliyon. 2025; 11(4):e42467.

PMID: 40061913 PMC: 11889546. DOI: 10.1016/j.heliyon.2025.e42467.


Context-guided segmentation for histopathologic cancer segmentation.

Juybari J, Hamilton J, Chen C, Khalil A, Zhu Y Sci Rep. 2025; 15(1):5404.

PMID: 39948139 PMC: 11825859. DOI: 10.1038/s41598-025-86428-7.


MUNet: a novel framework for accurate brain tumor segmentation combining UNet and mamba networks.

Yang L, Dong Q, Lin D, Tian C, Lu X Front Comput Neurosci. 2025; 19:1513059.

PMID: 39944950 PMC: 11814164. DOI: 10.3389/fncom.2025.1513059.


Out-of-distribution generalization for segmentation of lymph node metastasis in breast cancer.

Varnava Y, Jakate K, Garnett R, Androutsos D, Tyrrell P, Khademi A Sci Rep. 2025; 15(1):1127.

PMID: 39775089 PMC: 11707152. DOI: 10.1038/s41598-024-80495-y.


Invasive carcinoma segmentation in whole slide images using MS-ResMTUNet.

Liu Y, Shi H, He Q, Fu Y, Wang Y, He Y Heliyon. 2024; 10(4):e26413.

PMID: 39670062 PMC: 11636800. DOI: 10.1016/j.heliyon.2024.e26413.


References
1.
Veta M, Pluim J, van Diest P, Viergever M . Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng. 2014; 61(5):1400-11. DOI: 10.1109/TBME.2014.2303852. View

2.
LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015; 521(7553):436-44. DOI: 10.1038/nature14539. View

3.
Hou L, Samaras D, Kurc T, Gao Y, Davis J, Saltz J . Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016; 2016:2424-2433. PMC: 5085270. DOI: 10.1109/CVPR.2016.266. View

4.
Bejnordi B, Veta M, van Diest P, van Ginneken B, Karssemeijer N, Litjens G . Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017; 318(22):2199-2210. PMC: 5820737. DOI: 10.1001/jama.2017.14585. View

5.
DeSantis C, Ma J, Gaudet M, Newman L, Miller K, Sauer A . Breast cancer statistics, 2019. CA Cancer J Clin. 2019; 69(6):438-451. DOI: 10.3322/caac.21583. View