» Articles » PMID: 33475141

De Novo Genome Assembly of Two Tomato Ancestors, Solanum Pimpinellifolium and Solanum  Lycopersicum Var. Cerasiforme, by Long-read Sequencing

Overview
Journal DNA Res
Date 2021 Jan 21
PMID 33475141
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The ancestral tomato species are known to possess genes that are valuable for improving traits in breeding. Here, we aimed to construct high-quality de novo genome assemblies of Solanum pimpinellifolium 'LA1670' and S. lycopersicum var. cerasiforme 'LA1673', originating from Peru. The Pacific Biosciences (PacBio) long-read sequences with 110× and 104× coverages were assembled and polished to generate 244 and 202 contigs spanning 808.8 Mbp for 'LA1670' and 804.5 Mbp for 'LA1673', respectively. After chromosome-level scaffolding with reference guiding, 14 scaffold sequences corresponding to 12 tomato chromosomes and 2 unassigned sequences were constructed. High-quality genome assemblies were confirmed using the Benchmarking Universal Single-Copy Orthologs and long terminal repeat assembly index. The protein-coding sequences were then predicted, and their transcriptomes were confirmed. The de novo assembled genomes of S. pimpinellifolium and S. lycopersicum var. cerasiforme were predicted to have 71,945 and 75,230 protein-coding genes, including 29,629 and 29,185 non-redundant genes, respectively, as supported by the transcriptome analysis results. The chromosome-level genome assemblies coupled with transcriptome data sets of the two accessions would be valuable for gaining insights into tomato domestication and understanding genome-scale breeding.

Citing Articles

exhibits complex genetic resistance to pv. .

Hassan J, Diplock N, Chau-Ly I, Calma J, Boville E, Yee S Front Plant Sci. 2024; 15:1416078.

PMID: 39507355 PMC: 11537850. DOI: 10.3389/fpls.2024.1416078.


A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study.

Kaur H, Shannon L, Samac D BMC Genomics. 2024; 25(1):1022.

PMID: 39482604 PMC: 11526573. DOI: 10.1186/s12864-024-10931-w.


Chromosome-level genome assembly of Solanum pimpinellifolium.

Han H, Li X, Li T, Chen Q, Zhao J, Zhai H Sci Data. 2024; 11(1):577.

PMID: 38834611 PMC: 11150410. DOI: 10.1038/s41597-024-03442-6.


Genome-Wide Evolutionary Characterization and Expression Analysis of Major Latex Protein (MLP) Family Genes in Tomato.

Sun Z, Meng L, Yao Y, Zhang Y, Cheng B, Liang Y Int J Mol Sci. 2023; 24(19).

PMID: 37834453 PMC: 10573222. DOI: 10.3390/ijms241915005.


A chromosome-scale and haplotype-resolved genome assembly of carnation () based on high-fidelity sequencing.

Jiang H, Zhang X, Leng L, Gong D, Zhang X, Liu J Front Plant Sci. 2023; 14:1230836.

PMID: 37600187 PMC: 10437072. DOI: 10.3389/fpls.2023.1230836.


References
1.
Fernie A, Aharoni A . Pan-Genomic Illumination of Tomato Identifies Novel Gene-Trait Interactions. Trends Plant Sci. 2019; 24(10):882-884. DOI: 10.1016/j.tplants.2019.08.001. View

2.
Shirasawa K, Hirakawa H, Fukino N, Kitashiba H, Isobe S . Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named 'Sakurajima Daikon' possessing giant root. DNA Res. 2020; 27(2). PMC: 7334891. DOI: 10.1093/dnares/dsaa010. View

3.
Lin Y, Liu C, Chen K . Assessment of Genetic Differentiation and Linkage Disequilibrium in Using Genome-Wide High-Density SNP Markers. G3 (Bethesda). 2019; 9(5):1497-1505. PMC: 6505160. DOI: 10.1534/g3.118.200862. View

4.
Yan Z, Perez-de-Castro A, Diez M, Hutton S, Visser R, Wolters A . Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm. Front Plant Sci. 2018; 9:1198. PMC: 6110163. DOI: 10.3389/fpls.2018.01198. View

5.
Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman D . The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet. 2019; 51(6):1044-1051. DOI: 10.1038/s41588-019-0410-2. View