» Articles » PMID: 33441610

Suprabasin-derived Bioactive Peptides Identified by Plasma Peptidomics

Overview
Journal Sci Rep
Specialty Science
Date 2021 Jan 14
PMID 33441610
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Identification of low-abundance, low-molecular-weight native peptides using non-tryptic plasma has long remained an unmet challenge, leaving potential bioactive/biomarker peptides undiscovered. We have succeeded in efficiently removing high-abundance plasma proteins to enrich and comprehensively identify low-molecular-weight native peptides using mass spectrometry. Native peptide sequences were chemically synthesized and subsequent functional analyses resulted in the discovery of three novel bioactive polypeptides derived from an epidermal differentiation marker protein, suprabasin. SBSN_HUMAN[279-295] potently suppressed food/water intake and induced locomotor activity when injected intraperitoneally, while SBSN_HUMAN[225-237] and SBSN_HUMAN[243-259] stimulated the expression of proinflammatory cytokines via activation of NF-κB signaling in vascular cells. SBSN_HUMAN[225-237] and SBSN_HUMAN[279-295] immunoreactivities were present in almost all human organs analyzed, while immunoreactive SBSN_HUMAN[243-259] was abundant in the liver and pancreas. Human macrophages expressed the three suprabasin-derived peptides. This study illustrates a new approach for discovering unknown bioactive peptides in plasma via the generation of peptide libraries using a novel peptidomic strategy.

Citing Articles

Cell-autonomous innate immunity by proteasome-derived defence peptides.

Goldberg K, Lobov A, Antonello P, Shmueli M, Yakir I, Weizman T Nature. 2025; .

PMID: 40044870 DOI: 10.1038/s41586-025-08615-w.


Integrating a Multi-label Deep Learning Approach with Protein Information to Compare Bioactive Peptides in Brain and Plasma.

Gronning A, Scheele C Methods Mol Biol. 2024; 2758:179-195.

PMID: 38549014 DOI: 10.1007/978-1-0716-3646-6_9.


Size matters: the biochemical logic of ligand type in endocrine crosstalk.

Lone J, Long J, Svensson K Life Metab. 2024; 3(1.

PMID: 38425548 PMC: 10904031. DOI: 10.1093/lifemeta/load048.


Hallmarks of the metabolic secretome.

Reghupaty S, Dall N, Svensson K Trends Endocrinol Metab. 2023; 35(1):49-61.

PMID: 37845120 PMC: 10841501. DOI: 10.1016/j.tem.2023.09.006.


ANGT_HUMAN[448-462], an Anorexigenic Peptide Identified Using Plasma Peptidomics.

Sasaki S, Oba K, Kodera Y, Itakura M, Shichiri M J Endocr Soc. 2022; 6(7):bvac082.

PMID: 35702602 PMC: 9184509. DOI: 10.1210/jendso/bvac082.


References
1.
Schwenk J, Omenn G, Sun Z, Campbell D, Baker M, Overall C . The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays. J Proteome Res. 2017; 16(12):4299-4310. PMC: 5864247. DOI: 10.1021/acs.jproteome.7b00467. View

2.
Mahboob S, Mohamedali A, Ahn S, Schulz-Knappe P, Nice E, Baker M . Is isolation of comprehensive human plasma peptidomes an achievable quest?. J Proteomics. 2015; 127(Pt B):300-9. DOI: 10.1016/j.jprot.2015.05.010. View

3.
Nanjappa V, Thomas J, Marimuthu A, Muthusamy B, Radhakrishnan A, Sharma R . Plasma Proteome Database as a resource for proteomics research: 2014 update. Nucleic Acids Res. 2013; 42(Database issue):D959-65. PMC: 3965042. DOI: 10.1093/nar/gkt1251. View

4.
Anderson N, Anderson N . The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002; 1(11):845-67. DOI: 10.1074/mcp.r200007-mcp200. View

5.
Tirumalai R, Chan K, Prieto D, Issaq H, Conrads T, Veenstra T . Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics. 2003; 2(10):1096-103. DOI: 10.1074/mcp.M300031-MCP200. View