GADD45β Regulates Hepatic Gluconeogenesis Via Modulating the Protein Stability of FoxO1
Overview
Authors
Affiliations
Increased hepatic gluconeogenesis is one of the main contributors to the development of type 2 diabetes. Recently, it has been reported that growth arrest and DNA damage-inducible 45 beta (GADD45β) is induced under both fasting and high-fat diet (HFD) conditions that stimulate hepatic gluconeogenesis. Here, this study aimed to establish the molecular mechanisms underlying the novel role of GADD45β in hepatic gluconeogenesis. Both whole-body knockout (KO) mice and adenovirus-mediated knockdown (KD) mice of GADD45β exhibited decreased hepatic gluconeogenic gene expression concomitant with reduced blood glucose levels under fasting and HFD conditions, but showed a more pronounced effect in GADD45β KD mice. Further, in primary hepatocytes, GADD45β KD reduced glucose output, whereas GADD45β overexpression increased it. Mechanistically, GADD45β did not affect Akt-mediated forkhead box protein O1 (FoxO1) phosphorylation and forskolin-induced cAMP response element-binding protein (CREB) phosphorylation. Rather it increased FoxO1 transcriptional activity via enhanced protein stability of FoxO1. Further, GADD45β colocalized and physically interacted with FoxO1. Additionally, GADD45β deficiency potentiated insulin-mediated suppression of hepatic gluconeogenic genes, and it were impeded by the restoration of GADD45β expression. Our finding demonstrates GADD45β as a novel and essential regulator of hepatic gluconeogenesis. It will provide a deeper understanding of the FoxO1-mediated gluconeogenesis.
Contradictory Role of Gadd45β in Liver Diseases.
Wu C, Song X, Zhang M, Yang L, Lu P, Ding Q J Cell Mol Med. 2024; 28(23):e70267.
PMID: 39653679 PMC: 11628191. DOI: 10.1111/jcmm.70267.
Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms.
Tian J, Locker J Adv Exp Med Biol. 2022; 1360:87-99.
PMID: 35505164 DOI: 10.1007/978-3-030-94804-7_6.
Chen C, Ma Q, Deng P, Lin M, Gao P, He M Front Cell Dev Biol. 2021; 9:657623.
PMID: 33912567 PMC: 8075058. DOI: 10.3389/fcell.2021.657623.