» Articles » PMID: 33420085

Visualising G-quadruplex DNA Dynamics in Live Cells by Fluorescence Lifetime Imaging Microscopy

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jan 9
PMID 33420085
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability in live cells. Reduction of FancJ and RTEL1 expression in mammalian cells increases the DAOTA-M2 lifetime and therefore suggests an increased number of G4s in these cells, implying that FancJ and RTEL1 play a role in resolving G4 structures in cellulo.

Citing Articles

Imaging G-Quadruplex Nucleic Acids in Live Cells Using Thioflavin T and Fluorescence Lifetime Imaging Microscopy.

Bradford T, Summers P, Majid A, Sherin P, Lam J, Aggarwal S Anal Chem. 2024; 96(51):20223-20229.

PMID: 39660854 PMC: 11672229. DOI: 10.1021/acs.analchem.4c04207.


Visualizing liquid-liquid phase transitions.

Sahoo B, Deng X, Wong E, Clark N, Yang H, Subramanian V bioRxiv. 2024; .

PMID: 39554013 PMC: 11565804. DOI: 10.1101/2023.10.09.561572.


Live-Cell Imaging of RNA G-Quadruplex with a Dual-Color Fluorescence Switch-on Probe.

Sakamoto T Methods Mol Biol. 2024; 2875:83-90.

PMID: 39535641 DOI: 10.1007/978-1-0716-4248-1_7.


Super-resolution imaging reveals nucleolar encapsulation by single-stranded DNA.

Maki K, Fukute J, Adachi T J Cell Sci. 2024; 137(20).

PMID: 39206638 PMC: 11463959. DOI: 10.1242/jcs.262039.


The Rise of Bacterial G-Quadruplexes in Current Antimicrobial Discovery.

Ciaco S, Aronne R, Fiabane M, Mori M ACS Omega. 2024; 9(23):24163-24180.

PMID: 38882119 PMC: 11170735. DOI: 10.1021/acsomega.4c01731.


References
1.
Guan A, Zhang X, Sun X, Li Q, Xiang J, Wang L . Ethyl-substitutive Thioflavin T as a highly-specific fluorescence probe for detecting G-quadruplex structure. Sci Rep. 2018; 8(1):2666. PMC: 5805748. DOI: 10.1038/s41598-018-20960-7. View

2.
Tanious F, Veal J, Buczak H, Ratmeyer L, Wilson W . DAPI (4',6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemistry. 1992; 31(12):3103-12. DOI: 10.1021/bi00127a010. View

3.
Mendoza O, Bourdoncle A, Boule J, Brosh Jr R, Mergny J . G-quadruplexes and helicases. Nucleic Acids Res. 2016; 44(5):1989-2006. PMC: 4797304. DOI: 10.1093/nar/gkw079. View

4.
Campbell N, Karim N, Parkinson G, Gunaratnam M, Petrucci V, Todd A . Molecular basis of structure-activity relationships between salphen metal complexes and human telomeric DNA quadruplexes. J Med Chem. 2011; 55(1):209-22. DOI: 10.1021/jm201140v. View

5.
Bochman M, Paeschke K, Zakian V . DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012; 13(11):770-80. PMC: 3725559. DOI: 10.1038/nrg3296. View