» Articles » PMID: 33418487

Expanding Ecological Assessment by Integrating Microorganisms into Routine Freshwater Biomonitoring

Abstract

Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.

Citing Articles

Amoebae: beyond pathogens- exploring their benefits and future potential.

Dinda S, Hazra S, De A, Datta A, Das L, Pattanayak S Front Cell Infect Microbiol. 2025; 14():1518925.

PMID: 39744153 PMC: 11688213. DOI: 10.3389/fcimb.2024.1518925.


Biodiversity Patterns and DNA Barcode Gap Analysis of COI in Coastal Lagoons of Albania.

Ismailaj M, Zangaro F, Specchia V, Sangiorgio F, Marcucci F, Kicaj H Biology (Basel). 2024; 13(11).

PMID: 39596906 PMC: 11592379. DOI: 10.3390/biology13110951.


The functions and factors governing fungal communities and diversity in agricultural waters: insights into the ecosystem services aquatic mycobiota provide.

Pham P, Shi Y, Khan I, Sumarah M, Renaud J, Sunohara M Front Microbiol. 2024; 15:1460330.

PMID: 39564490 PMC: 11574526. DOI: 10.3389/fmicb.2024.1460330.


Bacterial Diversity in Sediments from Lianhuan Lake, Northeast China.

Pu W, Wang M, Song D, Zhao W, Sheng X, Huo T Microorganisms. 2024; 12(9).

PMID: 39338588 PMC: 11433699. DOI: 10.3390/microorganisms12091914.


Measuring the state of aquatic environments using eDNA-upscaling spatial resolution of biotic indices.

Blackman R, Carraro L, Keck F, Altermatt F Philos Trans R Soc Lond B Biol Sci. 2024; 379(1904):20230121.

PMID: 38705183 PMC: 11070250. DOI: 10.1098/rstb.2023.0121.