» Articles » PMID: 33390635

Assessing and Understanding Non-responsiveness of Maize and Soybean to Fertilizer Applications in African Smallholder Farms

Overview
Publisher Elsevier
Date 2021 Jan 4
PMID 33390635
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Use of mineral fertilizers is essential to enhance crop productivity in smallholder farming systems of Sub-Saharan Africa, but various studies have reported 'non-responsiveness' where application of inorganic fertilizers does not lead to satisfactory yield gains. This phenomenon is not well defined nor are its extent and causes well understood. In order to close these knowledge gaps, we assessed the effects of commonly recommended nitrogen (N), phosphorus (P) and/or potassium (K) fertilizer inputs on maize grain and soybean production on farmer fields across prevalent land slope and/or soil texture gradients (2 × 2 matrix) in four agroecosystems over two growing seasons. The extent of the problem in the two cropping systems was compared by decomposing frequency distributions into various ranges of fertilizer effect sizes that represent specific degrees of non-responsiveness and responsiveness. Key soil properties and rainfall variables for field trials were also determined to identify the factors that are limiting crop yield increases by mineral fertilizer input. Significant differences were found in mean fertilizer effect on crop productivity and frequency of non-responsiveness among the study areas and growing seasons, with some explicit contrasts between maize and soybean. The application of mineral fertilizers failed to increase maize yields by more than 0.5 t ha in up to 68 % of farmer fields and soybean yields by more than 150 kg ha in up to 65 % of farmer fields for specific study areas and/or growing seasons, while for others crop responses exceeded those levels. Unlike hypothesized, there were no consistent differences in crop fertilizer responses between the soil texture and land slope classes at any of the study sites. The variation in fertilizer effects on maize grain productivity across the study areas and growing seasons was most strongly related to the soil silt and clay content, and exchangeable cation balances of calcium (Ca), magnesium (Mg) and K, whereas fertilizer effects on soybean were most strongly influenced by the evenness in rainfall during growing seasons, and the soil silt content, extractable P, and ratio of total C and total N. Findings from our study emphasize that non-responsiveness by maize and soybean crops in African smallholder agroecosystems is dependent on multiple interacting factors, and requires careful scrutiny to ensure returns on investments.

Citing Articles

Assessment of the impact of crop management strategies on the yield of early-maturing maize varieties in the drylands of Niger Republic: Application of the DSSAT-CERES-Maize model.

Kamara A, Garba M, Tofa A, Mohamed A, Souley A, Abdoulaye T Heliyon. 2023; 9(7):e17829.

PMID: 37456015 PMC: 10344770. DOI: 10.1016/j.heliyon.2023.e17829.


Narrowing yield gaps does not guarantee a living income from smallholder farming-an empirical study from western Kenya.

Marinus W, Descheemaeker K, van de Ven G, Vanlauwe B, Giller K PLoS One. 2023; 18(4):e0283499.

PMID: 37079542 PMC: 10118150. DOI: 10.1371/journal.pone.0283499.


Simulating potential yield of rainfed soybean in northeast Nigeria.

Kamara A, Bebeley J, Aliyu K, Tofa A, Omoigui L, Solomon R Eur J Agron. 2023; 142:None.

PMID: 36597425 PMC: 9706254. DOI: 10.1016/j.eja.2022.126683.


Progress in research on site-specific nutrient management for smallholder farmers in sub-Saharan Africa.

Chivenge P, Zingore S, Ezui K, Njoroge S, Bunquin M, Dobermann A Field Crops Res. 2022; 281:108503.

PMID: 35582149 PMC: 8935389. DOI: 10.1016/j.fcr.2022.108503.

References
1.
Hengl T, B M Heuvelink G, Kempen B, Leenaars J, Walsh M, Shepherd K . Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS One. 2015; 10(6):e0125814. PMC: 4482144. DOI: 10.1371/journal.pone.0125814. View

2.
Ichami S, Shepherd K, Sila A, Stoorvogel J, Hoffland E . Fertilizer response and nitrogen use efficiency in African smallholder maize farms. Nutr Cycl Agroecosyst. 2020; 113(1):1-19. PMC: 7357725. DOI: 10.1007/s10705-018-9958-y. View

3.
Denning G, Kabambe P, Sanchez P, Malik A, Flor R, Harawa R . Input subsidies to improve smallholder maize productivity in Malawi: toward an african green revolution. PLoS Biol. 2009; 7(1):e23. PMC: 2631071. DOI: 10.1371/journal.pbio.1000023. View

4.
Sheahan M, Barrett C . Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy. 2017; 67:12-25. PMC: 5384438. DOI: 10.1016/j.foodpol.2016.09.010. View

5.
Kihara J, Nziguheba G, Zingore S, Coulibaly A, Esilaba A, Kabambe V . Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa. Agric Ecosyst Environ. 2016; 229:1-12. PMC: 4913530. DOI: 10.1016/j.agee.2016.05.012. View