» Articles » PMID: 33371342

Chitosan-Hydroxyapatite Composite Layers Generated in Radio Frequency Magnetron Sputtering Discharge: From Plasma to Structural and Morphological Analysis of Layers

Overview
Publisher MDPI
Date 2020 Dec 29
PMID 33371342
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Chitosan-hydroxyapatite composite layers were deposited on Si substrates in radio frequency magnetron sputtering discharges. The plasma parameters calculated from the current-voltage radio frequency-compensated Langmuir probe characteristics indicate a huge difference between the electron temperature in the plasma and at the sample holder. These findings aid in the understanding of the coagulation pattern of hydroxyapatite-chitosan macromolecules on the substrate surface. An increase in the sizes of the spherical-shape grain-like structures formed on the coating surface with the plasma electron number density was observed. The link between the chemical composition of the chitosan-hydroxyapatite composite film and the species sputtered from the target or produced by excitation/ionization mechanisms in the plasma was determined on the basis of X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and residual gas mass spectrometry analysis.

Citing Articles

Influence of Electron Beam Irradiation and RPMI Immersion on the Development of Magnesium-Doped Hydroxyapatite/Chitosan Composite Bioactive Layers for Biomedical Applications.

Groza A, Hurjui M, Yehia-Alexe S, Staicu C, Bleotu C, Iconaru S Polymers (Basel). 2025; 17(4).

PMID: 40006195 PMC: 11858993. DOI: 10.3390/polym17040533.


Evaluation of the In Vitro Behavior of Electrochemically Deposited Plate-like Crystal Hydroxyapatite Coatings.

Cotrut C, Blidisel A, Vranceanu D, Dragomir A, Ungureanu E, Pana I Biomimetics (Basel). 2024; 9(11).

PMID: 39590276 PMC: 11592108. DOI: 10.3390/biomimetics9110704.


Biological and Physicochemical Analysis of Sr-Doped Hydroxyapatite/Chitosan Composite Layers.

Zarif M, Bita B, Yehia-Alexe S, Negut I, Gradisteanu Pircalabioru G, Andronescu E Polymers (Basel). 2024; 16(13).

PMID: 39000777 PMC: 11244040. DOI: 10.3390/polym16131922.


Nanoencapsulation of Maqui () Extract in Chitosan-Tripolyphosphate and Chenopodin-Based Systems.

Andrade D, Maldonado-Bravo F, Alburquerque A, Perez C, Gamboa A, Caro N Antioxidants (Basel). 2024; 13(3).

PMID: 38539807 PMC: 10967421. DOI: 10.3390/antiox13030273.


Fabrication and Characterization of a Polydopamine-Modified Bacterial Cellulose and Sugarcane Filter Cake-Derived Hydroxyapatite Composite Scaffold.

Boyetey M, Sukyai P, Kamonsutthipaijit N, Nijpanich S, Chanlek N ACS Omega. 2023; 8(45):43295-43303.

PMID: 38024664 PMC: 10652255. DOI: 10.1021/acsomega.3c07266.


References
1.
Ghumman C, Moutinho A, Tolstogouzov A, Teodoro O . Time-of-flight secondary ion mass spectrometric identification of calcium formate Ca(HCO2)2 and metabolite of vitamin B6 in human stones. Rapid Commun Mass Spectrom. 2011; 25(7):997-9. DOI: 10.1002/rcm.4941. View

2.
Ghumman C, Moutinho A, Santos A, Tolstogouzov A, Teodoro O . TOF-SIMS study of cystine and cholesterol stones. J Mass Spectrom. 2012; 47(5):547-51. DOI: 10.1002/jms.2972. View

3.
Dong Y, Liang J, Cui Y, Xu S, Zhao N . Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Carbohydr Polym. 2018; 197:183-193. DOI: 10.1016/j.carbpol.2018.05.086. View

4.
Ghumman C, Carreira O, Moutinho A, Tolstogouzov A, Vassilenko V, Teodoro O . Identification of human calculi with time-of-flight secondary ion mass spectrometry. Rapid Commun Mass Spectrom. 2009; 24(2):185-90. DOI: 10.1002/rcm.4376. View

5.
Liu H, Yoo H, Hakansson K . Characterization of phosphate-containing metabolites by calcium adduction and electron capture dissociation. J Am Soc Mass Spectrom. 2008; 19(6):799-808. DOI: 10.1016/j.jasms.2008.03.004. View