» Articles » PMID: 33367645

SoupX Removes Ambient RNA Contamination from Droplet-based Single-cell RNA Sequencing Data

Overview
Journal Gigascience
Specialties Biology
Genetics
Date 2020 Dec 28
PMID 33367645
Citations 513
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Droplet-based single-cell RNA sequence analyses assume that all acquired RNAs are endogenous to cells. However, any cell-free RNAs contained within the input solution are also captured by these assays. This sequencing of cell-free RNA constitutes a background contamination that confounds the biological interpretation of single-cell transcriptomic data.

Results: We demonstrate that contamination from this "soup" of cell-free RNAs is ubiquitous, with experiment-specific variations in composition and magnitude. We present a method, SoupX, for quantifying the extent of the contamination and estimating "background-corrected" cell expression profiles that seamlessly integrate with existing downstream analysis tools. Applying this method to several datasets using multiple droplet sequencing technologies, we demonstrate that its application improves biological interpretation of otherwise misleading data, as well as improving quality control metrics.

Conclusions: We present SoupX, a tool for removing ambient RNA contamination from droplet-based single-cell RNA sequencing experiments. This tool has broad applicability, and its application can improve the biological utility of existing and future datasets.

Citing Articles

Microglial mechanisms drive amyloid-β clearance in immunized patients with Alzheimer's disease.

van Olst L, Simonton B, Edwards A, Forsyth A, Boles J, Jamshidi P Nat Med. 2025; .

PMID: 40050704 DOI: 10.1038/s41591-025-03574-1.


IFN-α Induces Heterogenous ROS Production in Human β-Cells.

Wagner L, Melnyk O, Turner A, Duffett B, Muralidharan C, Martinez-Irizarry M bioRxiv. 2025; .

PMID: 40027743 PMC: 11870469. DOI: 10.1101/2025.02.19.639120.


Single-cell multiome and spatial profiling reveals pancreas cell type-specific gene regulatory programs driving type 1 diabetes progression.

Melton R, Jimenez S, Elison W, Tucciarone L, Howell A, Wang G bioRxiv. 2025; .

PMID: 40027657 PMC: 11870426. DOI: 10.1101/2025.02.13.637721.


Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points.

Soelter T, Howton T, Wilk E, Whitlock J, Clark A, Birnbaum A J Cell Commun Signal. 2025; 19(1):e70006.

PMID: 40026671 PMC: 11870853. DOI: 10.1002/ccs3.70006.


A single-cell atlas to map sex-specific gene-expression changes in blood upon neurodegeneration.

Grandke F, Fehlmann T, Kern F, Gate D, Wolff T, Leventhal O Nat Commun. 2025; 16(1):1965.

PMID: 40000636 PMC: 11862118. DOI: 10.1038/s41467-025-56833-7.


References
1.
Popescu D, Botting R, Stephenson E, Green K, Webb S, Jardine L . Decoding human fetal liver haematopoiesis. Nature. 2019; 574(7778):365-371. PMC: 6861135. DOI: 10.1038/s41586-019-1652-y. View

2.
Regev A, Teichmann S, Lander E, Amit I, Benoist C, Birney E . The Human Cell Atlas. Elife. 2017; 6. PMC: 5762154. DOI: 10.7554/eLife.27041. View

3.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M . Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214. PMC: 4481139. DOI: 10.1016/j.cell.2015.05.002. View

4.
Bach K, Pensa S, Grzelak M, Hadfield J, Adams D, Marioni J . Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun. 2017; 8(1):2128. PMC: 5723634. DOI: 10.1038/s41467-017-02001-5. View

5.
Hashimoto S, Tabuchi Y, Yurino H, Hirohashi Y, Deshimaru S, Asano T . Comprehensive single-cell transcriptome analysis reveals heterogeneity in endometrioid adenocarcinoma tissues. Sci Rep. 2017; 7(1):14225. PMC: 5660171. DOI: 10.1038/s41598-017-14676-3. View