» Articles » PMID: 33347580

Dynamics of TRF1 Organizing a Single Human Telomere

Overview
Specialty Biochemistry
Date 2020 Dec 21
PMID 33347580
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2-9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.

Citing Articles

Novel role for Ddx39 in differentiation and telomere length regulation of embryonic stem cells.

Nai S, Wang M, Yang J, Ling B, Dong Q, Yang X Cell Death Differ. 2024; 31(11):1534-1544.

PMID: 39107495 PMC: 11519497. DOI: 10.1038/s41418-024-01354-x.


Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres.

Shepelev N, Dontsova O, Rubtsova M Int J Mol Sci. 2023; 24(5).

PMID: 36902458 PMC: 10003056. DOI: 10.3390/ijms24055027.


RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair.

Blasiak J, Szczepanska J, Sobczuk A, Fila M, Pawlowska E Int J Mol Sci. 2021; 22(21).

PMID: 34768871 PMC: 8583789. DOI: 10.3390/ijms222111440.


Role of mismatch repair in aging.

Wen J, Wang Y, Yuan M, Huang Z, Zou Q, Pu Y Int J Biol Sci. 2021; 17(14):3923-3935.

PMID: 34671209 PMC: 8495402. DOI: 10.7150/ijbs.64953.

References
1.
Li F, Kim H, Ji Z, Zhang T, Chen B, Ge Y . The BUB3-BUB1 Complex Promotes Telomere DNA Replication. Mol Cell. 2018; 70(3):395-407.e4. PMC: 5982595. DOI: 10.1016/j.molcel.2018.03.032. View

2.
Gohring J, Fulcher N, Jacak J, Riha K . TeloTool: a new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction. Nucleic Acids Res. 2013; 42(3):e21. PMC: 3919618. DOI: 10.1093/nar/gkt1315. View

3.
Ma X, Zhu M, Liu J, Li X, Qu L, Liang L . Interactions between PHD3-Bromo of MLL1 and H3K4me3 Revealed by Single-Molecule Magnetic Tweezers in a Parallel DNA Circuit. Bioconjug Chem. 2019; 30(12):2998-3006. DOI: 10.1021/acs.bioconjchem.9b00665. View

4.
Court R, Chapman L, Fairall L, Rhodes D . How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep. 2004; 6(1):39-45. PMC: 1299224. DOI: 10.1038/sj.embor.7400314. View

5.
Ohki R, Ishikawa F . Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats. Nucleic Acids Res. 2004; 32(5):1627-37. PMC: 390322. DOI: 10.1093/nar/gkh309. View