» Articles » PMID: 20670897

The Terminal Telomeric DNA Sequence Determines the Mechanism of Dysfunctional Telomere Fusion

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2010 Jul 31
PMID 20670897
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Mammalian telomeres consist of tandem DNA repeats that bind protective protein factors collectively termed shelterins. Telomere disruption typically results in genome instability induced by telomere fusions. The mechanism of telomere fusion varies depending on the means of telomere disruption. Here, we investigate telomere fusions caused by overexpression of mutant telomerases that add mutated telomeric repeats, thereby compromising shelterin binding to telomeric termini. While all mutant telomeric sequences tested induced heterodicentric chromosome fusions in ATM-competent cells, only those mutant repeat sequences with significant self complementarity induced ATM-independent sister chromatid and isodicentric chromosome fusions. Thus, once a telomere becomes dysfunctional, the terminal telomeric sequence itself determines the fate of that telomere. These results suggest that annealing of self-complementary DNA sequence engages an alternative telomere fusion pathway in human cells, and provide one explanation for the conspicuous lack of self complementarity in the majority of known naturally occurring eukaryotic telomeric sequences.

Citing Articles

A persistent variant telomere sequence in a human pedigree.

Hinchie A, Sanford S, Loughridge K, Sutton R, Parikh A, Gil Silva A Nat Commun. 2024; 15(1):4681.

PMID: 38824190 PMC: 11144197. DOI: 10.1038/s41467-024-49072-9.


The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients.

Muyas F, Rodriguez M, Cascao R, Afonso A, Sauer C, Faria C Nat Commun. 2024; 15(1):82.

PMID: 38167290 PMC: 10762111. DOI: 10.1038/s41467-023-44287-8.


Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ-dependent mechanism.

Al-Zain A, Nester M, Ahmed I, Symington L Nat Commun. 2023; 14(1):7020.

PMID: 37919272 PMC: 10622511. DOI: 10.1038/s41467-023-42640-5.


Dynamics of TRF1 organizing a single human telomere.

Li X, Wang M, Zheng W, Huang W, Wang Z, Jin K Nucleic Acids Res. 2020; 49(2):760-775.

PMID: 33347580 PMC: 7826288. DOI: 10.1093/nar/gkaa1222.


How RNAi machinery enters the world of telomerase.

Laudadio I, Carissimi C, Fulci V Cell Cycle. 2019; 18(10):1056-1067.

PMID: 31014212 PMC: 6592256. DOI: 10.1080/15384101.2019.1609834.


References
1.
Xu L, Blackburn E . Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. J Cell Biol. 2004; 167(5):819-30. PMC: 2172464. DOI: 10.1083/jcb.200408181. View

2.
Zou Y, Misri S, Shay J, Pandita T, Wright W . Altered states of telomere deprotection and the two-stage mechanism of replicative aging. Mol Cell Biol. 2009; 29(9):2390-7. PMC: 2668373. DOI: 10.1128/MCB.01569-08. View

3.
Marusic L, Anton M, Tidy A, Wang P, Villeponteau B, Bacchetti S . Reprogramming of telomerase by expression of mutant telomerase RNA template in human cells leads to altered telomeres that correlate with reduced cell viability. Mol Cell Biol. 1997; 17(11):6394-401. PMC: 232491. DOI: 10.1128/MCB.17.11.6394. View

4.
Markham N, Zuker M . DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 2005; 33(Web Server issue):W577-81. PMC: 1160267. DOI: 10.1093/nar/gki591. View

5.
Hockemeyer D, Daniels J, Takai H, de Lange T . Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell. 2006; 126(1):63-77. DOI: 10.1016/j.cell.2006.04.044. View