» Articles » PMID: 33343039

Active Inference on Discrete State-spaces: A Synthesis

Overview
Journal J Math Psychol
Date 2020 Dec 21
PMID 33343039
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Active inference is a normative principle underwriting perception, action, planning, decision-making and learning in biological or artificial agents. From its inception, its associated process theory has grown to incorporate complex generative models, enabling simulation of a wide range of complex behaviours. Due to successive developments in active inference, it is often difficult to see how its underlying principle relates to process theories and practical implementation. In this paper, we try to bridge this gap by providing a complete mathematical synthesis of active inference on discrete state-space models. This technical summary provides an overview of the theory, derives neuronal dynamics from first principles and relates this dynamics to biological processes. Furthermore, this paper provides a fundamental building block needed to understand active inference for mixed generative models; allowing continuous sensations to inform discrete representations. This paper may be used as follows: to guide research towards outstanding challenges, a practical guide on how to implement active inference to simulate experimental behaviour, or a pointer towards various in-silico neurophysiological responses that may be used to make empirical predictions.

Citing Articles

Counteracting uncertainty: exploring the impact of anxiety on updating predictions about environmental states.

Harris D, Arthur T, Wilson M, Le Gallais B, Parsons T, Dill A Biol Cybern. 2025; 119(2-3):8.

PMID: 39976741 PMC: 11842521. DOI: 10.1007/s00422-025-01006-4.


A detailed theory of thalamic and cortical microcircuits for predictive visual inference.

George D, Lazaro-Gredilla M, Lehrach W, Dedieu A, Zhou G, Marino J Sci Adv. 2025; 11(6):eadr6698.

PMID: 39908384 PMC: 11800772. DOI: 10.1126/sciadv.adr6698.


Action of the Euclidean versus projective group on an agent's internal space in curiosity driven exploration.

Sergeant-Perthuis G, Ruet N, Ognibene D, Tisserand Y, Williford K, Rudrauf D Biol Cybern. 2025; 119(1):4.

PMID: 39820849 PMC: 11742296. DOI: 10.1007/s00422-024-01001-1.


Flow and intuition: a systems neuroscience comparison.

Kotler S, Parvizi-Wayne D, Mannino M, Friston K Neurosci Conscious. 2025; 2025(1):niae040.

PMID: 39777155 PMC: 11700884. DOI: 10.1093/nc/niae040.


Bayesian Mechanics of Synaptic Learning Under the Free-Energy Principle.

Kim C Entropy (Basel). 2024; 26(11).

PMID: 39593928 PMC: 11592945. DOI: 10.3390/e26110984.


References
1.
Schwartenbeck P, FitzGerald T, Mathys C, Dolan R, Friston K . The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes. Cereb Cortex. 2014; 25(10):3434-45. PMC: 4585497. DOI: 10.1093/cercor/bhu159. View

2.
Friston K, Sajid N, Quiroga-Martinez D, Parr T, Price C, Holmes E . Active listening. Hear Res. 2020; 399:107998. PMC: 7812378. DOI: 10.1016/j.heares.2020.107998. View

3.
Vincent P, Parr T, Benrimoh D, Friston K . With an eye on uncertainty: Modelling pupillary responses to environmental volatility. PLoS Comput Biol. 2019; 15(7):e1007126. PMC: 6636765. DOI: 10.1371/journal.pcbi.1007126. View

4.
FitzGerald T, Moran R, Friston K, Dolan R . Precision and neuronal dynamics in the human posterior parietal cortex during evidence accumulation. Neuroimage. 2014; 107:219-228. PMC: 4306525. DOI: 10.1016/j.neuroimage.2014.12.015. View

5.
Dayan P, Hinton G, Neal R, Zemel R . The Helmholtz machine. Neural Comput. 1995; 7(5):889-904. DOI: 10.1162/neco.1995.7.5.889. View