» Articles » PMID: 30988442

Generalization Guides Human Exploration in Vast Decision Spaces

Overview
Journal Nat Hum Behav
Date 2019 Apr 17
PMID 30988442
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

From foraging for food to learning complex games, many aspects of human behaviour can be framed as a search problem with a vast space of possible actions. Under finite search horizons, optimal solutions are generally unobtainable. Yet, how do humans navigate vast problem spaces, which require intelligent exploration of unobserved actions? Using various bandit tasks with up to 121 arms, we study how humans search for rewards under limited search horizons, in which the spatial correlation of rewards (in both generated and natural environments) provides traction for generalization. Across various different probabilistic and heuristic models, we find evidence that Gaussian process function learning-combined with an optimistic upper confidence bound sampling strategy-provides a robust account of how people use generalization to guide search. Our modelling results and parameter estimates are recoverable and can be used to simulate human-like performance, providing insights about human behaviour in complex environments.

Citing Articles

Humans flexibly integrate social information despite interindividual differences in reward.

Witt A, Toyokawa W, Lala K, Gaissmaier W, Wu C Proc Natl Acad Sci U S A. 2024; 121(39):e2404928121.

PMID: 39302964 PMC: 11441569. DOI: 10.1073/pnas.2404928121.


Testing the convergent validity, domain generality, and temporal stability of selected measures of people's tendency to explore.

Anvari F, Billinger S, Analytis P, Franco V, Marchiori D Nat Commun. 2024; 15(1):7721.

PMID: 39231941 PMC: 11375013. DOI: 10.1038/s41467-024-51685-z.


Simple autonomous agents can enhance creative semantic discovery by human groups.

Ueshima A, Jones M, Christakis N Nat Commun. 2024; 15(1):5212.

PMID: 38890368 PMC: 11189566. DOI: 10.1038/s41467-024-49528-y.


Multiple and subject-specific roles of uncertainty in reward-guided decision-making.

Paunov A, LHotellier M, Guo D, He Z, Yu A, Meyniel F bioRxiv. 2024; .

PMID: 38585958 PMC: 10996615. DOI: 10.1101/2024.03.27.587016.


Information foraging with an oracle.

Gordon J, Chierichetti F, Panconesi A, Pezzulo G PLoS One. 2023; 18(12):e0295005.

PMID: 38153955 PMC: 10754449. DOI: 10.1371/journal.pone.0295005.


References
1.
Kolling N, Behrens T, Mars R, Rushworth M . Neural mechanisms of foraging. Science. 2012; 336(6077):95-8. PMC: 3440844. DOI: 10.1126/science.1216930. View

2.
Bramley N, Dayan P, Griffiths T, Lagnado D . Formalizing Neurath's ship: Approximate algorithms for online causal learning. Psychol Rev. 2017; 124(3):301-338. DOI: 10.1037/rev0000061. View

3.
Speekenbrink M, Konstantinidis E . Uncertainty and exploration in a restless bandit problem. Top Cogn Sci. 2015; 7(2):351-67. DOI: 10.1111/tops.12145. View

4.
Palminteri S, Lefebvre G, Kilford E, Blakemore S . Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing. PLoS Comput Biol. 2017; 13(8):e1005684. PMC: 5568446. DOI: 10.1371/journal.pcbi.1005684. View

5.
Lee S, Shimojo S, ODoherty J . Neural computations underlying arbitration between model-based and model-free learning. Neuron. 2014; 81(3):687-99. PMC: 3968946. DOI: 10.1016/j.neuron.2013.11.028. View