» Articles » PMID: 33340010

Cardiac Optogenetics: a Decade of Enlightenment

Overview
Journal Nat Rev Cardiol
Date 2020 Dec 19
PMID 33340010
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.

Citing Articles

Theoretical analysis of low-power deep synergistic sono-optogenetic excitation of neurons by co-expressing light-sensitive and mechano-sensitive ion-channels.

Roy S, Pyari G, Bansal H Commun Biol. 2025; 8(1):379.

PMID: 40050670 PMC: 11885482. DOI: 10.1038/s42003-025-07792-8.


A soft multimodal optoelectronic array interface for multiparametric mapping of heart function in vivo.

Quirion N, Madrid M, Chang J, Fehr A, Rytkin E, Shields N Sci Adv. 2025; 11(6):eads8608.

PMID: 39919178 PMC: 11804930. DOI: 10.1126/sciadv.ads8608.


A High-Fat Diet Induces Epigenetic 1-Carbon Metabolism, Homocystinuria, and Renal-Dependent HFpEF.

Tyagi S Nutrients. 2025; 17(2).

PMID: 39861346 PMC: 11767380. DOI: 10.3390/nu17020216.


Phototherapy to Facilitate Wound Healing Following Pacemaker Infection: A Promising Tool to Improve Outcomes.

Kneller J J Innov Card Rhythm Manag. 2025; 15(12):6122-6125.

PMID: 39802077 PMC: 11717157. DOI: 10.19102/icrm.2024.15124.


Optogenetic stimulation and simultaneous optical mapping of membrane potential and calcium transients in human engineered cardiac spheroids.

Guragain B, Zhang H, Wu Y, Wang Y, Wei Y, Wood G J Mol Cell Cardiol. 2024; 199:51-59.

PMID: 39674364 PMC: 11788028. DOI: 10.1016/j.yjmcc.2024.12.003.


References
1.
Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann C, Fleischmann B . Optogenetic control of heart muscle in vitro and in vivo. Nat Methods. 2010; 7(11):897-900. DOI: 10.1038/nmeth.1512. View

2.
Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, Fujii H . Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods. 2014; 12(1):64-70. DOI: 10.1038/nmeth.3185. View

3.
Boyle P, Murphy M, Karathanos T, Zahid S, Blake 3rd R, Trayanova N . Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models. J Physiol. 2017; 596(2):181-196. PMC: 5767701. DOI: 10.1113/JP275264. View

4.
Nyns E, Poelma R, Volkers L, Plomp J, Bart C, Kip A . An automated hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Sci Transl Med. 2019; 11(481). DOI: 10.1126/scitranslmed.aau6447. View

5.
Li Q, Ni R, Hong H, Goh K, Rossi M, Fast V . Electrophysiological Properties and Viability of Neonatal Rat Ventricular Myocyte Cultures with Inducible ChR2 Expression. Sci Rep. 2017; 7(1):1531. PMC: 5431527. DOI: 10.1038/s41598-017-01723-2. View