» Articles » PMID: 33333020

Generation of Functional Human 3D Cortico-Motor Assembloids

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Dec 17
PMID 33333020
Citations 192
Authors
Affiliations
Soon will be listed here.
Abstract

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.

Citing Articles

Toxicity assessment using neural organoids: innovative approaches and challenges.

Park S, Sun W Toxicol Res. 2025; 41(2):91-103.

PMID: 40013084 PMC: 11850696. DOI: 10.1007/s43188-025-00279-y.


Modeling ALS with Patient-Derived iPSCs: Recent Advances and Future Potentials.

Dawoody Nejad L, Pioro E Brain Sci. 2025; 15(2).

PMID: 40002468 PMC: 11852857. DOI: 10.3390/brainsci15020134.


Protocol for generating human assembloids to investigate thalamocortical and corticothalamic synaptic transmission and plasticity.

Nityanandam A, Patton M, Bayazitov I, Newman K, Thomas K, Zakharenko S STAR Protoc. 2025; 6(1):103630.

PMID: 39921865 PMC: 11850219. DOI: 10.1016/j.xpro.2025.103630.


Generation of human fetal brain organoids and their CRISPR engineering for brain tumor modeling.

Pagliaro A, Andreatta F, Finger R, Artegiani B, Hendriks D Nat Protoc. 2025; .

PMID: 39915620 DOI: 10.1038/s41596-024-01107-7.


Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Yu H, Yang S, Chen Y, Wu C, Xu J, Yang Y Sci Rep. 2025; 15(1):3635.

PMID: 39880975 PMC: 11779978. DOI: 10.1038/s41598-025-88292-x.


References
1.
Klapoetke N, Murata Y, Kim S, Pulver S, Birdsey-Benson A, Cho Y . Independent optical excitation of distinct neural populations. Nat Methods. 2014; 11(3):338-46. PMC: 3943671. DOI: 10.1038/nmeth.2836. View

2.
Zhou Q, Anderson D . The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002; 109(1):61-73. DOI: 10.1016/s0092-8674(02)00677-3. View

3.
Dolmetsch R, Geschwind D . The human brain in a dish: the promise of iPSC-derived neurons. Cell. 2011; 145(6):831-4. PMC: 3691069. DOI: 10.1016/j.cell.2011.05.034. View

4.
Pasca S, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Pasca A . Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011; 17(12):1657-62. PMC: 3517299. DOI: 10.1038/nm.2576. View

5.
Shim S, Kwan K, Li M, Lefebvre V, Sestan N . Cis-regulatory control of corticospinal system development and evolution. Nature. 2012; 486(7401):74-9. PMC: 3375921. DOI: 10.1038/nature11094. View