» Articles » PMID: 33303766

Diffuse Neural Coupling Mediates Complex Network Dynamics Through the Formation of Quasi-critical Brain States

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Dec 11
PMID 33303766
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The biological mechanisms that allow the brain to balance flexibility and integration remain poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate that increasing diffuse cortical coupling within a validated biophysical corticothalamic model traverses the system through a quasi-critical regime in which spatial heterogeneities in input noise support transient critical dynamics in distributed subregions. The presence of quasi-critical states coincides with known signatures of complex, adaptive brain network dynamics. Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain human neuroimaging data. Together, our results establish that modulating the balance between local and diffuse synaptic coupling in a thalamocortical model subtends the emergence of quasi-critical brain states that act to flexibly transition the brain between unique modes of information processing.

Citing Articles

Symmetry breaking organizes the brain's resting state manifold.

Fousek J, Rabuffo G, Gudibanda K, Sheheitli H, Petkoski S, Jirsa V Sci Rep. 2024; 14(1):31970.

PMID: 39738729 PMC: 11686292. DOI: 10.1038/s41598-024-83542-w.


Causal evidence for cholinergic stabilization of attractor landscape dynamics.

Taylor N, Whyte C, Munn B, Chang C, Lizier J, Leopold D Cell Rep. 2024; 43(6):114359.

PMID: 38870015 PMC: 11255396. DOI: 10.1016/j.celrep.2024.114359.


Thalamic contributions to the state and contents of consciousness.

Whyte C, Redinbaugh M, Shine J, Saalmann Y Neuron. 2024; 112(10):1611-1625.

PMID: 38754373 PMC: 11537458. DOI: 10.1016/j.neuron.2024.04.019.


Dynamic Phase Transition in 2D Ising Systems: Effect of Anisotropy and Defects.

Ettori F, Coupe T, Sluckin T, Puppin E, Biscari P Entropy (Basel). 2024; 26(2).

PMID: 38392375 PMC: 10888001. DOI: 10.3390/e26020120.


The biological role of local and global fMRI BOLD signal variability in human brain organization.

Baracchini G, Zhou Y, da Silva Castanheira J, Hansen J, Rieck J, Turner G bioRxiv. 2023; .

PMID: 37961684 PMC: 10634715. DOI: 10.1101/2023.10.22.563476.


References
1.
Ghosh A, Rho Y, McIntosh A, Kotter R, Jirsa V . Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput Biol. 2008; 4(10):e1000196. PMC: 2551736. DOI: 10.1371/journal.pcbi.1000196. View

2.
Servan-Schreiber D, Printz H, Cohen J . A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science. 1990; 249(4971):892-5. DOI: 10.1126/science.2392679. View

3.
Shine J, Aburn M, Breakspear M, Poldrack R . The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. Elife. 2018; 7. PMC: 5818252. DOI: 10.7554/eLife.31130. View

4.
Shine J, Breakspear M, Bell P, Ehgoetz Martens K, Shine R, Koyejo O . Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat Neurosci. 2019; 22(2):289-296. DOI: 10.1038/s41593-018-0312-0. View

5.
Robinson P, Rennie C, Rowe D, OConnor S . Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp. 2004; 23(1):53-72. PMC: 6871818. DOI: 10.1002/hbm.20032. View