» Articles » PMID: 28981612

Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2017 Oct 6
PMID 28981612
Citations 1240
Authors
Affiliations
Soon will be listed here.
Abstract

A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal).

Citing Articles

Functional connectivity of the precuneus and posterior cingulate cortex moderates the relationship between tic symptoms and premonitory urge in tourette syndrome.

Wang X, Zhang W, Men W, Hong X, Cui Y, Lei T Eur Child Adolesc Psychiatry. 2025; .

PMID: 40063278 DOI: 10.1007/s00787-025-02685-x.


Functional differentiation of the default and frontoparietal control networks predicts individual differences in creative achievement: evidence from macroscale cortical gradients.

Sassenberg T, Jung R, DeYoung C Cereb Cortex. 2025; 35(3).

PMID: 40056422 PMC: 11890067. DOI: 10.1093/cercor/bhaf046.


Rehabilitation training robot using mirror therapy for the upper and lower limb after stroke: a prospective cohort study.

Wu X, Qiao X, Xie Y, Yang Q, An W, Xia L J Neuroeng Rehabil. 2025; 22(1):54.

PMID: 40055709 PMC: 11889811. DOI: 10.1186/s12984-025-01590-3.


The interactive effects of divided attention and semantic elaboration on associative recognition memory: an fMRI study.

Buchsbaum B, Moscovitch M, Tang K, Ziegler M, Craik F Cereb Cortex. 2025; 34(12).

PMID: 40036194 PMC: 11878383. DOI: 10.1093/cercor/bhae464.


Mendelian randomization analyses uncover causal relationships between brain structural connectome and risk of psychiatric disorders.

Xiao K, Chang X, Ye C, Zhang Z, Ma T, Su J medRxiv. 2025; .

PMID: 40034754 PMC: 11875323. DOI: 10.1101/2025.02.20.25322606.


References
1.
Honey C, Sporns O, Cammoun L, Gigandet X, Thiran J, Meuli R . Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A. 2009; 106(6):2035-40. PMC: 2634800. DOI: 10.1073/pnas.0811168106. View

2.
Van Essen D, Glasser M, Dierker D, Harwell J, Coalson T . Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex. 2011; 22(10):2241-62. PMC: 3432236. DOI: 10.1093/cercor/bhr291. View

3.
Ghosh A, Rho Y, McIntosh A, Kotter R, Jirsa V . Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput Biol. 2008; 4(10):e1000196. PMC: 2551736. DOI: 10.1371/journal.pcbi.1000196. View

4.
Hubel D, Wiesel T . RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965; 28:229-89. DOI: 10.1152/jn.1965.28.2.229. View

5.
Geyer S, Schleicher A, Schormann T, Mohlberg H, Bodegard A, Roland P . Integration of microstructural and functional aspects of human somatosensory areas 3a, 3b, and 1 on the basis of a computerized brain atlas. Anat Embryol (Berl). 2001; 204(4):351-66. DOI: 10.1007/s004290100200. View