» Articles » PMID: 33301096

Amplified Fragment Length Polymorphism: Applications and Recent Developments

Overview
Specialty Molecular Biology
Date 2020 Dec 10
PMID 33301096
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective amplification of a subset of digested DNA fragments from any source to generate and compare unique fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness, resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy, genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encompasses in detail the various applications of AFLP in plants and the major advantages and disadvantages. The review also considers various modifications of this technique and novel developments in detection of polymorphism. A wet-lab protocol is also provided.

Citing Articles

Emerging Trends and Technologies Used for the Identification, Detection, and Characterisation of Plant-Parasitic Nematode Infestation in Crops.

Pun T, Thapa Magar R, Koech R, Owen K, Adorada D Plants (Basel). 2024; 13(21).

PMID: 39519959 PMC: 11548156. DOI: 10.3390/plants13213041.


Detection Methods for Pine Wilt Disease: A Comprehensive Review.

Tahir S, Hassan S, Yang L, Ma M, Li C Plants (Basel). 2024; 13(20).

PMID: 39458823 PMC: 11511408. DOI: 10.3390/plants13202876.


One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity.

Hallahan B Biology (Basel). 2024; 13(10).

PMID: 39452126 PMC: 11504056. DOI: 10.3390/biology13100817.


Optimization of Plant Growth Regulators for In Vitro Mass Propagation of a Disease-Free 'Shine Muscat' Grapevine Cultivar.

Kim S, Zebro M, Jang D, Sim J, Park H, Kim K Curr Issues Mol Biol. 2023; 45(10):7721-7733.

PMID: 37886931 PMC: 10605919. DOI: 10.3390/cimb45100487.


What Can Genetics Do for the Control of Infectious Diseases in Aquaculture?.

Sciuto S, Colli L, Fabris A, Pastorino P, Stoppani N, Esposito G Animals (Basel). 2022; 12(17).

PMID: 36077896 PMC: 9454762. DOI: 10.3390/ani12172176.


References
1.
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M . AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995; 23(21):4407-14. PMC: 307397. DOI: 10.1093/nar/23.21.4407. View

2.
Savelkoul P, Aarts H, de HAAS J, Dijkshoorn L, Duim B, Otsen M . Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol. 1999; 37(10):3083-91. PMC: 85499. DOI: 10.1128/JCM.37.10.3083-3091.1999. View

3.
El-Esawi M, Germaine K, Bourke P, Malone R . AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland. C R Biol. 2016; 339(5-6):163-170. DOI: 10.1016/j.crvi.2016.03.002. View

4.
Qi X, Stam P, Lindhout P . Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet. 2014; 96(3-4):376-84. DOI: 10.1007/s001220050752. View

5.
Maughan P, Saghai Maroof M, Buss G, Huestis G . Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet. 2013; 93(3):392-401. DOI: 10.1007/BF00223181. View