» Articles » PMID: 33300173

MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery

Overview
Specialty Chemistry
Date 2020 Dec 10
PMID 33300173
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Extremely high capacity hard carbon for Na-ion battery, delivering 478 mAh g , is successfully synthesized by heating a freeze-dried mixture of magnesium gluconate and glucose by a MgO-template technique. Influences of synthetic conditions and nano-structures on electrochemical Na storage properties in the hard carbon are systematically studied to maximize the reversible capacity. Nano-sized MgO particles are formed in a carbon matrix prepared by pre-treatment of the mixture at 600 °C. Through acid leaching of MgO and carbonization at 1500 °C, resultant hard carbon demonstrates an extraordinarily large reversible capacity of 478 mAh g with a high Coulombic efficiency of 88 % at the first cycle.

Citing Articles

Atomic Sn-incorporated subnanopore-rich hard carbon host for highly reversible quasi-metallic Li storage.

Jin T, Zhang X, Yuan S, Yu L Sci Adv. 2025; 11(8):eads6483.

PMID: 39982983 PMC: 11844717. DOI: 10.1126/sciadv.ads6483.


Effect of pre-treatment conditions on the electrochemical performance of hard carbon derived from bio-waste.

Mutiat O, Alpysbayev A, Abduakhitov D, Kudaibergenov K, Bakenov Z, Myung S RSC Adv. 2025; 15(2):1105-1114.

PMID: 39807198 PMC: 11727071. DOI: 10.1039/d4ra08029g.


Electrochemically synthesized HO at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets.

Wu Y, Zhao Y, Yuan Q, Sun H, Wang A, Sun K Nat Commun. 2024; 15(1):10843.

PMID: 39737981 PMC: 11685507. DOI: 10.1038/s41467-024-55071-7.


Materials Nanoarchitectonics for Advanced Devices.

Ariga K Materials (Basel). 2024; 17(23).

PMID: 39685353 PMC: 11643071. DOI: 10.3390/ma17235918.


New frontiers in alkali metal insertion into carbon electrodes for energy storage.

Gossage Z, Igarashi D, Fujii Y, Kawaguchi M, Tatara R, Nakamoto K Chem Sci. 2024; .

PMID: 39479166 PMC: 11514190. DOI: 10.1039/d4sc03203a.


References
1.
Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S . Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion". Chem Rec. 2018; 18(4):459-479. DOI: 10.1002/tcr.201700057. View

2.
Qian J, Wu X, Cao Y, Ai X, Yang H . High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed Engl. 2013; 52(17):4633-6. DOI: 10.1002/anie.201209689. View

3.
Bommier C, Surta T, Dolgos M, Ji X . New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. Nano Lett. 2015; 15(9):5888-92. DOI: 10.1021/acs.nanolett.5b01969. View

4.
Zhao C, Wang Q, Lu Y, Li B, Chen L, Hu Y . High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci Bull (Beijing). 2023; 63(17):1125-1129. DOI: 10.1016/j.scib.2018.07.018. View

5.
Yabuuchi N, Kubota K, Dahbi M, Komaba S . Research development on sodium-ion batteries. Chem Rev. 2014; 114(23):11636-82. DOI: 10.1021/cr500192f. View