» Articles » PMID: 33288832

Essential Role of Submandibular Lymph Node Dendritic Cells in Protective Sublingual Immunotherapy Against Murine Allergy

Overview
Journal Commun Biol
Specialty Biology
Date 2020 Dec 8
PMID 33288832
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

While sublingual immunotherapy (SLIT) is known as an allergen-specific treatment for type-1 allergies, how it controls allergic pathogenesis remains unclear. Here, we show the prerequisite role of conventional dendritic cells in submandibular lymph nodes (ManLNs) in the effectiveness of SLIT for the treatment of allergic disorders in mice. Deficiency of conventional dendritic cells or CD4Foxp3 regulatory T (T) cells abrogates the protective effect of SLIT against allergic disorders. Furthermore, sublingual antigenic application primarily induces antigen-specific CD4Foxp3 T cells in draining ManLNs, in which it is severely impaired in the absence of cDCs. In ManLNs, migratory CD11b cDCs are superior to other conventional dendritic cell subsets for the generation of antigen-specific CD4Foxp3 T cells, which is reflected by their dominancy in the tolerogenic features to favor this program. Thus, ManLNs are privileged sites in triggering mucosal tolerance mediating protect effect of SLIT on allergic disorders that requires a tolerogenesis of migratory CD11b conventional dendritic cells.

Citing Articles

A Mouse Model of Ovalbumin-Induced Airway Allergy Exhibits Altered Localization of SARS-CoV-2-Susceptible Cells in the Lungs, Which Reflects Omicron BA.5 Infection Dynamics, Viral Mutations, and Immunopathology.

Iketani T, Miyazaki K, Iwata-Yoshikawa N, Sakai Y, Shiwa-Sudo N, Ozono S Microbiol Immunol. 2024; 69(1):59-76.

PMID: 39572887 PMC: 11701410. DOI: 10.1111/1348-0421.13184.


Mechanism differences in the start time of sublingual immunotherapy in a mouse allergic airway inflammation model.

Saito A, Koya T, Aoki A, Naramoto S, Ueno H, Nishiyama Y Sci Rep. 2024; 14(1):26334.

PMID: 39487347 PMC: 11530651. DOI: 10.1038/s41598-024-78062-6.


Sublingual immune cell clusters and dendritic cell distribution in the oral cavity.

Kusumoto Y, Ueda M, Hashimoto M, Takeuchi H, Okada N, Yamamoto J JCI Insight. 2024; 9(21).

PMID: 39352752 PMC: 11601585. DOI: 10.1172/jci.insight.167373.


Crucial role of dendritic cells in the generation of anti-tumor T-cell responses and immunogenic tumor microenvironment to suppress tumor development.

Tominaga M, Uto T, Fukaya T, Mitoma S, Riethmacher D, Umekita K Front Immunol. 2024; 15:1200461.

PMID: 39206204 PMC: 11349553. DOI: 10.3389/fimmu.2024.1200461.


Dendritic cells in food allergy, treatment, and tolerance.

Liu E, Yin X, Siniscalco E, Eisenbarth S J Allergy Clin Immunol. 2024; 154(3):511-522.

PMID: 38971539 PMC: 11414995. DOI: 10.1016/j.jaci.2024.06.017.


References
1.
Hovav A . Dendritic cells of the oral mucosa. Mucosal Immunol. 2013; 7(1):27-37. DOI: 10.1038/mi.2013.42. View

2.
Welty N, Staley C, Ghilardi N, Sadowsky M, Igyarto B, Kaplan D . Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J Exp Med. 2013; 210(10):2011-24. PMC: 3782055. DOI: 10.1084/jem.20130728. View

3.
Bekiaris V, Persson E, Agace W . Intestinal dendritic cells in the regulation of mucosal immunity. Immunol Rev. 2014; 260(1):86-101. DOI: 10.1111/imr.12194. View

4.
Tanaka Y, Nagashima H, Bando K, Lu L, Ozaki A, Morita Y . Oral CD103CD11b classical dendritic cells present sublingual antigen and induce Foxp3 regulatory T cells in draining lymph nodes. Mucosal Immunol. 2016; 10(1):79-90. DOI: 10.1038/mi.2016.46. View

5.
Moingeon P, Mascarell L . Induction of tolerance via the sublingual route: mechanisms and applications. Clin Dev Immunol. 2011; 2012:623474. PMC: 3216342. DOI: 10.1155/2012/623474. View