» Articles » PMID: 33286504

Information Transfer in Linear Multivariate Processes Assessed Through Penalized Regression Techniques: Validation and Application to Physiological Networks

Overview
Journal Entropy (Basel)
Publisher MDPI
Date 2020 Dec 8
PMID 33286504
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state-space (SS) representation of vector autoregressive (VAR) models. Despite their high computational reliability these tools still suffer from estimation problems which emerge, in the case of low ratio between data points available and the number of time series, when VAR identification is performed via the standard ordinary least squares (OLS). In this work we propose to replace the OLS with penalized regression performed through the Least Absolute Shrinkage and Selection Operator (LASSO), prior to computation of the measures of information transfer and information modification. First, simulating networks of several coupled Gaussian systems with complex interactions, we show that the LASSO regression allows, also in conditions of data paucity, to accurately reconstruct both the underlying network topology and the expected patterns of information transfer. Then we apply the proposed VAR-SS-LASSO approach to a challenging application context, i.e., the study of the physiological network of brain and peripheral interactions probed in humans under different conditions of rest and mental stress. Our results, which document the possibility to extract physiologically plausible patterns of interaction between the cardiovascular, respiratory and brain wave amplitudes, open the way to the use of our new analysis tools to explore the emerging field of Network Physiology in several practical applications.

Citing Articles

Robust Model-Free Identification of the Causal Networks Underlying Complex Nonlinear Systems.

Yang G, Lei S, Yang G Entropy (Basel). 2025; 26(12.

PMID: 39766692 PMC: 11675911. DOI: 10.3390/e26121063.


Efficient Search Algorithms for Identifying Synergistic Associations in High-Dimensional Datasets.

Hourican C, Li J, Mishra P, Lehtimaki T, Mishra B, Kahonen M Entropy (Basel). 2024; 26(11).

PMID: 39593912 PMC: 11592859. DOI: 10.3390/e26110968.


Time-varying information measures: an adaptive estimation of information storage with application to brain-heart interactions.

Antonacci Y, Bara C, Zaccaro A, Ferri F, Pernice R, Faes L Front Netw Physiol. 2023; 3:1242505.

PMID: 37920446 PMC: 10619917. DOI: 10.3389/fnetp.2023.1242505.


High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors.

Nagle A, Gerrelts J, Krause B, Boes A, Bruss J, Nourski K Neuroimage. 2023; 277:120211.

PMID: 37385393 PMC: 10528866. DOI: 10.1016/j.neuroimage.2023.120211.


The New Field of Network Physiology: Building the Human Physiolome.

Ivanov P Front Netw Physiol. 2023; 1:711778.

PMID: 36925582 PMC: 10013018. DOI: 10.3389/fnetp.2021.711778.


References
1.
Greco A, Faes L, Catrambone V, Barbieri R, Scilingo E, Valenza G . Lateralization of directional brain-heart information transfer during visual emotional elicitation. Am J Physiol Regul Integr Comp Physiol. 2019; 317(1):R25-R38. DOI: 10.1152/ajpregu.00151.2018. View

2.
Valdes-Sosa P, Sanchez-Bornot J, Lage-Castellanos A, Vega-Hernandez M, Bosch-Bayard J, Melie-Garcia L . Estimating brain functional connectivity with sparse multivariate autoregression. Philos Trans R Soc Lond B Biol Sci. 2005; 360(1457):969-81. PMC: 1854937. DOI: 10.1098/rstb.2005.1654. View

3.
Kuipers N, Sauder C, Carter J, Ray C . Neurovascular responses to mental stress in the supine and upright postures. J Appl Physiol (1985). 2008; 104(4):1129-36. PMC: 3608133. DOI: 10.1152/japplphysiol.01285.2007. View

4.
Bartsch R, Liu K, Bashan A, Ivanov P . Network Physiology: How Organ Systems Dynamically Interact. PLoS One. 2015; 10(11):e0142143. PMC: 4640580. DOI: 10.1371/journal.pone.0142143. View

5.
Zanetti M, Faes L, Nollo G, De Cecco M, Pernice R, Maule L . Information Dynamics of the Brain, Cardiovascular and Respiratory Network during Different Levels of Mental Stress. Entropy (Basel). 2020; 21(3). PMC: 7514755. DOI: 10.3390/e21030275. View