» Articles » PMID: 33275597

Evolution Along the Parasitism-mutualism Continuum Determines the Genetic Repertoire of Prophages

Overview
Specialty Biology
Date 2020 Dec 4
PMID 33275597
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Integrated into their bacterial hosts' genomes, prophage sequences exhibit a wide diversity of length and gene content, from highly degraded cryptic sequences to intact, functional prophages that retain a full complement of lytic-function genes. We apply three approaches-bioinformatics, analytical modelling and computational simulation-to understand the diverse gene content of prophages. In the bioinformatics work, we examine the distributions of over 50,000 annotated prophage genes identified in 1384 prophage sequences, comparing the gene repertoires of intact and incomplete prophages. These data indicate that genes involved in the replication, packaging, and release of phage particles have been preferentially lost in incomplete prophages, while tail fiber, transposase and integrase genes are significantly enriched. Consistent with these results, our mathematical and computational approaches predict that genes involved in phage lytic function are preferentially lost, resulting in shorter prophages that often retain genes that benefit the host. Informed by these models, we offer novel hypotheses for the enrichment of integrase and transposase genes in cryptic prophages. Overall, we demonstrate that functional and cryptic prophages represent a diversity of genetic sequences that evolve along a parasitism-mutualism continuum.

Citing Articles

Pseudomonas aeruginosa maintains an inducible array of novel and diverse prophages over lengthy persistence in cystic fibrosis lungs.

Kyrkou I, Bartell J, Lechuga A, Lood C, Marvig R, Lavigne R FEMS Microbiol Lett. 2025; 372.

PMID: 39890605 PMC: 11846083. DOI: 10.1093/femsle/fnaf017.


Escherichia coli phage-inducible chromosomal island aids helper phage replication and represses the locus of enterocyte effacement pathogenicity island.

Pick K, Stadel L, Raivio T ISME J. 2025; 19(1).

PMID: 39745890 PMC: 11773190. DOI: 10.1093/ismejo/wrae258.


Exploring the diversity and evolutionary strategies of prophages in Hyphomicrobiales, comparing animal-associated with non-animal-associated bacteria.

Goncalves-Oliveira J, Pattenden T, Nachum-Biala Y, de Sousa K, Wahl L, Harrus S BMC Microbiol. 2024; 24(1):159.

PMID: 38724926 PMC: 11080155. DOI: 10.1186/s12866-024-03315-3.


Endogenous virophages are active and mitigate giant virus infection in the marine protist .

Koslova A, Hackl T, Bade F, Sanchez Kasikovic A, Barenhoff K, Schimm F Proc Natl Acad Sci U S A. 2024; 121(11):e2314606121.

PMID: 38446847 PMC: 10945749. DOI: 10.1073/pnas.2314606121.


Analysis of CRISPR/Cas Genetic Structure, Spacer Content and Molecular Epidemiology in Brazilian Clinical Isolates.

Silva A, Luz A, Xavier K, Barros M, Alves H, Batista M Pathogens. 2023; 12(6).

PMID: 37375454 PMC: 10302819. DOI: 10.3390/pathogens12060764.


References
1.
Little J, Shepley D, Wert D . Robustness of a gene regulatory circuit. EMBO J. 1999; 18(15):4299-307. PMC: 1171506. DOI: 10.1093/emboj/18.15.4299. View

2.
Brueggemann A, Harrold C, Rezaei Javan R, van Tonder A, McDonnell A, Edwards B . Pneumococcal prophages are diverse, but not without structure or history. Sci Rep. 2017; 7:42976. PMC: 5317160. DOI: 10.1038/srep42976. View

3.
Bergh O, Borsheim K, Bratbak G, Heldal M . High abundance of viruses found in aquatic environments. Nature. 1989; 340(6233):467-8. DOI: 10.1038/340467a0. View

4.
Mottawea W, Duceppe M, Dupras A, Usongo V, Jeukens J, Freschi L . Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Front Microbiol. 2018; 9:836. PMC: 5945981. DOI: 10.3389/fmicb.2018.00836. View

5.
Bossi L, Fuentes J, Mora G, Figueroa-Bossi N . Prophage contribution to bacterial population dynamics. J Bacteriol. 2003; 185(21):6467-71. PMC: 219396. DOI: 10.1128/JB.185.21.6467-6471.2003. View