Coarse Raman and Optical Diffraction Tomographic Imaging Enable Label-free Phenotyping of Isogenic Breast Cancer Cells of Varying Metastatic Potential
Overview
Biotechnology
Affiliations
Identification of the metastatic potential represents one of the most important tasks for molecular imaging of cancer. While molecular imaging of metastases has witnessed substantial progress as an area of clinical inquiry, determining precisely what differentiates the metastatic phenotype has proven to be more elusive. In this study, we utilize both the morphological and molecular information provided by 3D optical diffraction tomography and Raman spectroscopy, respectively, to propose a label-free route for optical phenotyping of cancer cells at single-cell resolution. By using an isogenic panel of cell lines derived from MDA-MB-231 breast cancer cells that vary in their metastatic potential, we show that 3D refractive index tomograms can capture subtle morphological differences among the parental, circulating tumor cells, and lung metastatic cells. By leveraging its molecular specificity, we demonstrate that coarse Raman microscopy is capable of rapidly mapping a sufficient number of cells for training a random forest classifier that can accurately predict the metastatic potential of cells at a single-cell level. We also perform multivariate curve resolution alternating least squares decomposition of the spectral dataset to demarcate spectra from cytoplasm and nucleus, and test the feasibility of identifying metastatic phenotypes using the spectra only from the cytoplasmic and nuclear regions. Overall, our study provides a rationale for employing coarse Raman mapping to substantially reduce measurement time thereby enabling the acquisition of reasonably large training datasets that hold the key for label-free single-cell analysis and, consequently, for differentiation of indolent from aggressive phenotypes.
Karunakaran V, Dadgar S, Paidi S, Mordi A, Lowe W, Marium Mim U ACS Omega. 2024; 9(42):43025-43033.
PMID: 39464461 PMC: 11500151. DOI: 10.1021/acsomega.4c06096.
Cell-TIMP: Cellular Trajectory Inference based on Morphological Parameter.
Raj P, Gupta H, Anantha P, Barman I bioRxiv. 2024; .
PMID: 38712120 PMC: 11071304. DOI: 10.1101/2024.04.18.590109.
Medina-Ramirez I, Macias-Diaz J, Masuoka-Ito D, Zapien J Discov Nano. 2024; 19(1):64.
PMID: 38594446 PMC: 11003950. DOI: 10.1186/s11671-024-04003-x.
Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges.
Wang Y, Fang L, Wang Y, Xiong Z Adv Sci (Weinh). 2023; 11(7):e2300668.
PMID: 38072672 PMC: 10870035. DOI: 10.1002/advs.202300668.
Hyperspectral Raman Imaging for Automated Recognition of Human Renal Amyloid.
Kim J, Zhang C, Sperati C, Barman I, Bagnasco S J Histochem Cytochem. 2023; 71(11):643-652.
PMID: 37833851 PMC: 10617441. DOI: 10.1369/00221554231206858.