» Articles » PMID: 33271948

The Hippo-YAP Signaling As Guardian in the Pool of Intestinal Stem Cells

Overview
Journal Biomedicines
Date 2020 Dec 4
PMID 33271948
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Despite endogenous insults such as mechanical stress and danger signals derived from the microbiome, the intestine can maintain its homeostatic condition through continuous self-renewal of the crypt-villus axis. This extraordinarily rapid turnover of intestinal epithelium, known to be 3 to 5 days, can be achieved by dynamic regulation of intestinal stem cells (ISCs). The crypt base-located leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5) ISCs maintain intestinal integrity in the steady state. Under severe damage leading to the loss of conventional ISCs, quiescent stem cells and even differentiated cells can be reactivated into stem-cell-like cells with multi-potency and contribute to the reconstruction of the intestinal epithelium. This process requires fine-tuning of the various signaling pathways, including the Hippo-YAP system. In this review, we summarize recent advances in understanding the correlation between Hippo-YAP signaling and intestinal homeostasis, repair, and tumorigenesis, focusing specifically on ISC regulation.

Citing Articles

ABL1‒YAP1 axis in intestinal stem cell activated by deoxycholic acid contributes to hepatic steatosis.

Mao T, Xu X, Liu L, Wu Y, Wu X, Niu W J Transl Med. 2024; 22(1):1119.

PMID: 39707364 PMC: 11662811. DOI: 10.1186/s12967-024-05865-6.


Glutamine promotes the proliferation of intestinal stem cells via inhibition of TP53-induced glycolysis and apoptosis regulator promoter methylation in burned mice.

Zhang P, Wu D, Zha X, Su S, Zhang Y, Wei Y Burns Trauma. 2024; 12:tkae045.

PMID: 39328365 PMC: 11427069. DOI: 10.1093/burnst/tkae045.


Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease.

Pinelli M, Makdissi S, Scur M, Parsons B, Baker K, Otley A Cell Death Dis. 2024; 15(7):536.

PMID: 39069546 PMC: 11284232. DOI: 10.1038/s41419-024-06925-x.


Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming.

Oh S, Seo Y, Kim H Int J Stem Cells. 2024; 17(3):213-223.

PMID: 38267367 PMC: 11361849. DOI: 10.15283/ijsc23176.


GPR137 inactivates Hippo signaling to promote gastric cancer cell malignancy.

Li L, Tang J, Cao B, Xu Q, Xu S, Lin C Biol Direct. 2024; 19(1):3.

PMID: 38163861 PMC: 10759669. DOI: 10.1186/s13062-023-00449-8.


References
1.
Chen C, Gajewski K, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C . The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A. 2010; 107(36):15810-5. PMC: 2936591. DOI: 10.1073/pnas.1004060107. View

2.
Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C . The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 2005; 8(1):27-36. DOI: 10.1038/ncb1339. View

3.
Taniguchi K, Wu L, Grivennikov S, de Jong P, Lian I, Yu F . A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature. 2015; 519(7541):57-62. PMC: 4447318. DOI: 10.1038/nature14228. View

4.
Udan R, Kango-Singh M, Nolo R, Tao C, Halder G . Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 2003; 5(10):914-20. DOI: 10.1038/ncb1050. View

5.
Sharma P, McNeill H . Fat and Dachsous cadherins. Prog Mol Biol Transl Sci. 2013; 116:215-35. DOI: 10.1016/B978-0-12-394311-8.00010-8. View