» Articles » PMID: 33265313

Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method

Overview
Journal Entropy (Basel)
Publisher MDPI
Date 2020 Dec 3
PMID 33265313
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The spatial block analysis (SBA) method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood-Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i) the statistical ensemble and (ii) the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard-Jones (TSLJ) potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.

Citing Articles

Optimal Molecular Dynamics System Size for Increased Precision and Efficiency for Epoxy Materials.

Kashmari K, Patil S, Kemppainen J, Shankara G, Odegard G J Phys Chem B. 2024; 128(17):4255-4265.

PMID: 38648370 PMC: 11075082. DOI: 10.1021/acs.jpcb.4c00845.


Chilling alcohol on the computer: isothermal compressibility and the formation of hydrogen-bond clusters in liquid propan-1-ol.

Baptista L, Sevilla M, Wagner M, Kremer K, Cortes-Huerto R Eur Phys J E Soft Matter. 2023; 46(11):117.

PMID: 38019330 PMC: 10687148. DOI: 10.1140/epje/s10189-023-00380-w.


Inter-nucleosomal potentials from nucleosomal positioning data.

Li K, Oiwa N, Mishra S, Heermann D Eur Phys J E Soft Matter. 2022; 45(4):33.

PMID: 35403917 PMC: 9001623. DOI: 10.1140/epje/s10189-022-00185-3.


Chemical Potential Differences in the Macroscopic Limit from Fluctuations in Small Systems.

Braten V, Wilhelmsen O, Schnell S J Chem Inf Model. 2021; 61(2):840-855.

PMID: 33566592 PMC: 8023585. DOI: 10.1021/acs.jcim.0c01367.


Thermodynamics and Statistical Mechanics of Small Systems.

Puglisi A, Sarracino A, Vulpiani A Entropy (Basel). 2020; 20(6).

PMID: 33265482 PMC: 7512911. DOI: 10.3390/e20060392.


References
1.
Ganguly P, van der Vegt N . Convergence of Sampling Kirkwood-Buff Integrals of Aqueous Solutions with Molecular Dynamics Simulations. J Chem Theory Comput. 2015; 9(3):1347-55. DOI: 10.1021/ct301017q. View

2.
Ben-Naim A . Theoretical aspects of self-assembly of proteins: a Kirkwood-Buff-theory approach. J Chem Phys. 2013; 138(22):224906. DOI: 10.1063/1.4810806. View

3.
Humphrey W, Dalke A, Schulten K . VMD: visual molecular dynamics. J Mol Graph. 1996; 14(1):33-8, 27-8. DOI: 10.1016/0263-7855(96)00018-5. View

4.
Salacuse , Denton , Egelstaff . Finite-size effects in molecular dynamics simulations: Static structure factor and compressibility. I. Theoretical method. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996; 53(3):2382-2389. DOI: 10.1103/physreve.53.2382. View

5.
Pierce V, Kang M, Aburi M, Weerasinghe S, Smith P . Recent applications of Kirkwood-Buff theory to biological systems. Cell Biochem Biophys. 2007; 50(1):1-22. PMC: 2566781. DOI: 10.1007/s12013-007-9005-0. View