» Articles » PMID: 33264405

Dual Function of GTPBP6 in Biogenesis and Recycling of Human Mitochondrial Ribosomes

Overview
Specialty Biochemistry
Date 2020 Dec 2
PMID 33264405
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.

Citing Articles

Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis.

Liu L, Shao M, Huang Y, Qian P, Huang H J Hematol Oncol. 2024; 17(1):95.

PMID: 39396039 PMC: 11470598. DOI: 10.1186/s13045-024-01615-9.


Identification of Potential Causal Genes for Neurodegenerative Diseases by Mitochondria-Related Genome-Wide Mendelian Randomization.

Yin K, Chen T, Gu X, Jiang Z, Su W, Duan Q Mol Neurobiol. 2024; 62(3):3892-3902.

PMID: 39347895 DOI: 10.1007/s12035-024-04528-3.


A roadmap for ribosome assembly in human mitochondria.

Lavdovskaia E, Hanitsch E, Linden A, Pasen M, Challa V, Horokhovskyi Y Nat Struct Mol Biol. 2024; 31(12):1898-1908.

PMID: 38992089 PMC: 11638073. DOI: 10.1038/s41594-024-01356-w.


GTPBP8 plays a role in mitoribosome formation in human mitochondria.

Cipullo M, Valentin Gese G, Gopalakrishna S, Krueger A, Lobo V, Pirozhkova M Nat Commun. 2024; 15(1):5664.

PMID: 38969660 PMC: 11229512. DOI: 10.1038/s41467-024-50011-x.


Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis.

Antolinez-Fernandez A, Esteban-Ramos P, Fernandez-Moreno M, Clemente P Front Cell Dev Biol. 2024; 12:1410245.

PMID: 38855161 PMC: 11157125. DOI: 10.3389/fcell.2024.1410245.


References
1.
Brown A, Amunts A, Bai X, Sugimoto Y, Edwards P, Murshudov G . Structure of the large ribosomal subunit from human mitochondria. Science. 2014; 346(6210):718-722. PMC: 4246062. DOI: 10.1126/science.1258026. View

2.
Rorbach J, Gammage P, Minczuk M . C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Res. 2012; 40(9):4097-109. PMC: 3351152. DOI: 10.1093/nar/gkr1282. View

3.
Ayyub S, Gao F, Lightowlers R, Chrzanowska-Lightowlers Z . Rescuing stalled mammalian mitoribosomes - what can we learn from bacteria?. J Cell Sci. 2020; 133(1). DOI: 10.1242/jcs.231811. View

4.
Chomyn A . In vivo labeling and analysis of human mitochondrial translation products. Methods Enzymol. 1996; 264:197-211. DOI: 10.1016/s0076-6879(96)64020-8. View

5.
Dey S, Biswas C, Sengupta J . The universally conserved GTPase HflX is an RNA helicase that restores heat-damaged ribosomes. J Cell Biol. 2018; 217(7):2519-2529. PMC: 6028529. DOI: 10.1083/jcb.201711131. View